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iii

Stachura, M. (Ph.D. Candidate, Aerospace Engineering)

Cooperative Planning for UAS-based Sensor Networks In Realistic Communication Environments

Thesis directed by Prof. Eric W. Frew

This dissertation develops a unified, tractable algorithm for distributed planning for multiple un-

manned aircraft based sensor networks with performance bounds. An information-theoretic objective func-

tion is derived that incorporates sensing and communication to guide a cooperative team of unmanned

aircraft. The communication is modelled with packet erasure channels for each link in a multi-hop mesh

network. This objective is shown to be intractable and assumptions are made to find a tractable formulation.

This tractable formulation is then distributed using the chain rule of mutual information and optimization

algorithms are designed with performance bounds for different scenarios and compared against the fully

centralized mutual information approach. This comparison is done analytically using submodularity under

certain assumptions and Monte Carlo simulations to evaluate the algorithms when these assumptions break

down.

A novel unmanned aircraft system platform was developed to facilitate experiments with multiple

unmanned aircraft utilizing sensing and multi-hop mesh networking. This system was used to perform

localization experiments of radio frequency emitters based on the received signal strength measurement.

The planning algorithms were demonstrated with multiple aircraft to show there validity and tractability

on a real world scenario. These experiments were used to asses the algorithms performance showing the

improvement in sensing is appreciable and specifically the benefits of utilizing multi-hop communication.
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Chapter 1

Introduction

Autonomous robot sensor networks are becoming a useful tool to gather information for many appli-

cations. In field deployments, especially those involving unmanned aircraft, the performance of the wireless

communication subsystem is one of the main limitations affecting the performance of a network comprised

of multiple vehicles [5]. In many cooperative information-gathering tasks, utilizing robotic sensor networks

can result in conflicts between moving the robots to improve sensing performance versus ensuring good com-

munication in order to share data and plans with each other. Communication requirements typically favor

moving robots in the network closer together while sensing requirements often favor moving robots further

apart, e.g. as they move closer to different tasks or targets.

1.1 Overview

The overall goal of this work is to control a cooperative unmanned aircraft system (UAS) sensor net-

work in realistic information gathering scenarios that allows different communication schemes. The method-

ology to achieve this is the design of an efficient, unified approach that factors in sensing and communication

into a single quantity that can be distributed locally to each aircraft. This work includes the analysis of the

planning methods and examining the performance bounds.

Several challenges need to be addressed to achieve the goals of this work. First and foremost is

formulating a planning algorithm that allows proper coordination between the vehicles. Factoring in the

communication into this formulation is another key challenge. Computation of the utility function is made

difficult by allowing multi-hop communication which will make the capabilities of the network a function of
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the global configuration of the team. Further, a communication aware planning algorithm must be designed

to run in real-time given the limited computationally abilities on small UAS.

Given this goal and these challenges, the algorithm developed, implemented, and assessed in this

dissertation solves the problem of controlling a network of cooperative vehicles to perform information

gathering tasks. The key features of the approach in the algorithm in this dissertation include:

• Distributed planning across the aircraft.

• Stochastic modeling of sensing and communication.

• Unified, efficient approach.

• Incorporates direct and multi-hop communication.

One example application of communication aware information gathering, which will be used throughout this

dissertation to assess the control approach, is localization of radio frequency (RF) emitters by a team of

unmanned aircraft (Figure 1.1).

Figure 1.1: Overview of an example system that could use the algorithms described in this dissertation.
Here there are three aircraft localizing two ground targets with a stationary fusion center processing the
measurements.
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1.2 Related Work

Distributed planning by robotic sensor networks has been studied extensively using information-

theoretic metrics, e.g. mutual information or conditional entropy, without considering communication lim-

itations in the problem formulation (as opposed to the related problem of assuring the algorithm itself

performances well in the face of limited communication) [3, 15, 24, 16, 42, 56]. When the problem is lin-

ear, or linearized, and noise terms are Gaussian, optimal information gathering is done by minimizing a

norm of the uncertainty captured in the error covariance matrix [15, 24, 3]. For general non-linear problems

with non-Gaussian distributions, mixture models [25] or particle filters [16, 42] can be utilized to propagate

probability distributions and approximate the information metrics. When using the mutual information

planning metric, submodularity can be used to derive performance bounds of the distributed planner under

the assumption the measurements are independent conditioned on the state being estimated [56].

A variety of different methods have been used to incorporate communication performance explicitly

into distributed planning algorithms. One approach is to impose geometric constraints on the sensor network

to maintain communication performance while optimizing a task-specific objective. Generally the geometric

constraints require robots to stay in close proximity to one another, where the allowable separation distance

is derived to maintain connectivity based on a disk communication model [44, 60] or to attain a given

communication rate [10, 23]. An alternative to hard motion constraints is to implicitly restrict the motion

by creating virtual forces between the vehicles that maintains a minimum range between vehicles while

the primary task is performed [51]. A third approach treats assured communication as a task that can be

assigned as part of a task allocation scheme [30, 21]. In those approaches, the overall objective depends on

the achieved data rate or bit error rate of the communication network, and vehicles that are under-utilized

in other tasks can be assigned to focus on improving data rate and maintaining connectivity [30]. A fourth

approach considers the problem of reducing network bandwidth used for coordination by only communicating

when necessary or useful [19, 2]. Finally, joint control of robot mobility and communication has been achieved

for classes of data gathering problems [59, 61, 58].

Distributed planning that includes communication in the utility function is complicated by the fact
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that overall performance is dependent on both sensing (getting the best measurements) and communica-

tion (getting the measurements to the best locations). Furthermore, sensing and communication are both

stochastic functions of the individual robot capabilities, the robot sensor network configuration, and the

external environment. Optimal information gathering needs an efficient, unifying approach that balances

the contributions of sensing and communication appropriately. Geometric approaches tend to provide com-

munication networks that stay connected and maintain feasible solutions, but can be conservative in terms of

collecting sensor information. Task allocation strategies provide additional flexibility by treating sensing and

communication equally, but can become intractable due to the combinatorial optimization over all possible

sensing and communication allocations.

Another major approach to address path planning where the planner’s objective communication is

the bi-criteria approach of optimizing sensing performance and communication performance [22, 2, 19]. For

static sensor networks, the network can be configured through a distributed process to either minimize the

information-theoretic sensing uncertainty while constraining the number of expected data (re)transmissions

or to minimize the number of data (re)transmissions while constraining the sensing cost [22]. Alterna-

tively, communication bandwidth can be reduced in multi-hop mobile sensor networks when each robot only

transmits useful data to its neighbors, where the usefulness metric is based on the distance between the dis-

tributions of the local and global estimates of the team sensing objective [2]. A limitation of the bi-criteria

approach is that the performance will depend on user selected parameters. In general it is not clear how to

select the constraints on either the sensing or communication.

This dissertation along with similar work [47, 14] specifically looks at developing an algorithm that

computes the probability that an individual measurement gets through the network to a fusion center and

optimizes the expected improvement in the sensing objective. When a single fixed base station is used,

the communication channel can be estimated online and sensing can be performed via gradient descent to

maximize the expected improvement in the Fisher Information Matrix [14]. Work published over the course

of this thesis examined the case of receding horizon control utilizing multi-hop communication and plans

over a fixed hierarchy to improve coordination of a team of vehicles [47]. The communication model is fixed

throughout the mission and based on empirical data. The extension to multi-hop communication schemes
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are shown in that paper to be a non-trivial. The resulting approach described in this dissertation can be

viewed as encapsulating the approaches in Ref. [14] and Ref. [47], and can easily exploit online learning of

the communication environment [14, 54].

The goal of the planning algorithms developed in this dissertation is to improve the sensing capabilities

of teams of UAS with communication limitations. To assess these planning algorithms the sensing task of

localizing ground-based RF emitters will be used. Most of the related work in RF localization has focused

on indoor environments where the position of the sensor platform being controlled is found from the known

positions of several access points, prior knowledge of the RSSI map [57], or simultaneous localization and

mapping (SLAM) [9]. For the problem examined here the sensor platform, i.e. the unmanned aircraft (UA),

already knows its position accurately through a combination of GPS and inertial sensors. However, it is

assumed that it has no knowledge of the stationary ground nodes, and is tasked with geo-locating them

using only RSSI measurements. Similar work was done by Fudge et al [13] using a binary Bayesian grid filter

for both search and localization of RF emitters by a team of UA. The RF emitters in that paper were based

on the Family Radio Service at 462.6375MHz. Work done by Kim et al [20] looked at localizing transient

sources at the 2.4GHz frequency based on 802.15.4, specifically the ZigBee standard. Their work utilized

the ratio of signal strength measurements between two robots and coordinated their movement to improve

estimation. Their work was demonstrated in simulation. The same group also did experiments [43] with a

single ground vehicle employing a directional antenna to localize ZigBee radios.

The algorithms presented in this dissertation will overcome several limitations of the related work.

The derived mutual information utility that models both sensing and communication avoids the need for user

selected parameters seen in the task allocation and bi-criteria schemes mentioned above. The conservative

nature of the geometric approaches is overcome by the distributed mutual information utility that allows

direct comparison against the full mutual information using both analytical and empirical bounds. The

communication model in mutual information derivation allows for both direct and multi-hop communication

schemes.
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1.3 Detailed Problem and Solution

This dissertation addresses developing a unified, tractable algorithm for distributed planning for multi-

UA based sensor networks with performance bounds. The detailed problem is to derive an information-

theoretic objective function that incorporates sensing and communication and is tractable. This includes the

design of distributed optimization algorithms with performance bounds for different scenarios. The solution

to this problem is to derive mutual information for the case of coordinated sensor fusion over packet erasure

channels that can include multi-hop communication. Given that the packet erasure channel is a stochastic

model, mutual information combines the sensing and communication into a single utility metric that is a

function of sensor state (e.g. robot position). Calculation of the mutual information is difficult for general

sensing problems and includes enumeration over the power set of all possible communication links and time

steps. As a result, this work introduces several simplifications in order to derive a tractable utility function

that still maintains important properties of the mutual information utility.

A key part of the presented solution is assessing the performance of the presented algorithms. In

particular, bounds on the performance of a distributed planning scheme are compared against the global

optimum for scenarios that exhibit submodularity. It will be shown that certain network protocols, such as

direct communication, provide submodular formulations while multi-hop communication schemes lose sub-

modularity and guaranteed optimality bounds. Monte Carlo simulations are used to assess the performance

and bounds of this approach. UAS flight experiments are used, specifically performing RF localization

experiments for several different scenarios to demonstrate and assess the algorithms described in this work.

1.4 Contributions

This dissertation makes three key contributions: (1) derivation of the metric for controlling UAS sensor

networks, (2) development and assessment of the distributed planning algorithm, (3) UAS development, flight

experiments, and the demonstration and assessment of the planning algorithms.

(1) The metric for controlling the sensor networks is derived by combining sensing and communication

into a single metric based on mutual information. This metric includes assumptions to allow a
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tractable solution. A local utility function is derived that enables distributed optimization with

performance bounds under certain conditions. The communication model is based on a packet

erasure channel model and the formulation works with both direct and multi-hop communication

schemes.

(2) The development and assessment of the distributed planning algorithm is central in this work.

Algorithms utilizing the information metric to control the UAS sensor network for different network

classes are derived. Assessment of the performance of these planning algorithms is done through

several comparisons. It is shown that computing the mutual information over a general multi-hop

sensor network is not tractable, so assumptions are made on the network model to simplify the

calculation. Numerical assessments are done to show that this simplification still results in good

performance of the planning algorithms in many cases. This simplified algorithm is also distributed

across the vehicles. It is shown that for the assumptions of direct communication the result of

the planner is analytically bounded to no worse than one half the optimal solution, though Monte

Carlo simulations show that performance is typically significantly better than this bound. Finally,

simulations are performed for the multi-hop communication model and shown to still have good

performance compared to the centralized solution even in the absence of analytical bounds.

(3) The experimental contributions can be separated into three parts:

(a) Several different UAS platforms were created for flight experiments to assess the algorithms de-

veloped in this work. This contribution included the NexSTAR UAS for localizing 2.4GHz RF

emitters along with the multi-UA RF sensing system, comprised of the Tempest and Skywalker

X8, for localizing 433MHz RF emitters along with single and multi-UA planning experiments.

This contribution included significant additions to the current software suite used by the Re-

search and Engineering Center for Unmanned Vehicles (RECUV) and contributed to the acqui-

sition of many Certificates of Authorization (COAs) from the Federal Aviation Administration

for flight of the UAS.

(b) Flight experiments to design, test, and assess localization of RF sources. Experiments were



www.manaraa.com

8

flown to show localization of 2.4GHz WiFi emitters utilizing an unscented Kalman filter (UKF).

These experiments were used to assess different state vectors, antenna types, and other features.

RF localization experiments were also flown for 433MHz emitters and used to compare different

filter formulations, primarily the extended Kalman filter (EKF), UKF, and particle filter (PF).

(c) The culmination of this work was flight experiments of the distributed path planning algorithm.

Single UA experiments utilizing the path planning algorithms were flown for the 433MHz lo-

calization problem. These experiments were used to assess the performance of active path

planning for sensing and showed significant improvement compared against non path planning

flights. Multi-UA experiments were flown to demonstrate the full distributed path planning

algorithm and assess performance. Comparisons were made between direct communication and

multi-hop network topologies and it was shown that for certain scenarios the increased range of

a multi-hop network results in significant improvements in sensing. The flight experiments also

demonstrated with multiple aircraft the tractability of these algorithms in a real world scenario.
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System Models

This chapter presents and derives the models used in the path planning. The goal of this work is using

mutual information, the most common metric for information quantity, for distributed sensing over packet

erasure channels that model multi-hop communication. The information dynamics are derived in this chapter

along with the sensing, communication, and aircraft dynamics models specifically used in the simulations and

experiments to evaluate the planning algorithms. The sensing problem used in this work is the localization

of stationary RF emitters using the received signal strength as provided by the received signal strength

indicator (RSSI) measurement. The simulation evaluation also included bearings only tracking of moving

targets. The communication link model is the packet erasure channel model using both direct communication

and multi-hop. The aircraft dynamics model is a non-holonomic vehicle model.

2.1 Information Dynamics

This section derives distributed information dynamics based on the mutual information between an

unknown state of interest and measurements made by the sensors of the individual agents in a mobile sensor

network. Consider an unknown state vector of interest xk (e.g. the position of a moving ground target) that

evolves according to discrete-time nonlinear dynamics

xt+1 = fx(xt,wt) (2.1)

where t is the discrete time and wt is a random disturbance vector that encapsulates the unknown inputs

and disturbances in the state transition function. Further, consider the set S of N mobile sensors such that
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each sensor n ∈ S produces an observation ynt based on the nonlinear observation function

ynt = hn(xt, s
n
t ,v

n
t ) (2.2)

where snt is the sensor state (e.g. the position of a robot carrying the sensor) at time t and vnt is random

sensor noise. Let each sensor state evolve according to deterministic nonlinear dynamics

snt+1 = fs,n(snt ,u
n
t ) (2.3)

where unt is the control input for sensor i. For ease of notation combine variables for the individual agents into

single vectors, so let yt = [y1
t , · · · ,yNt ]T , st = [s1t , · · · , sNt ]T , ut = [u1

t , · · · ,uNt ]T , and st+1 = fs,(st,ut) =

[fs,1(s1t ,u
1
t ), · · · , fs,N (sNt ,u

N
t )]T . Further, consider the case where the measurement ynt is sent over a packet

erasure channel [4] that successfully delivers packets with probability βnt (st). Let znt be the measurement

received at the fusion center, then

Prob(znt = ynt ) = βnt (st)

Prob(znt = ∅) = 1− βnt (st)

(2.4)

Finally, let p(xt) be the probability distribution function of xt with first and second moments (mean and

covariance matrix) µt and Pt, respectively. Figure 2.1 is a graphical illustration of what this Markov chain

looks like.

xk 

yk 

xk+1 

yk+1 

xk+T 

yk+T 

x0 

zk zk+1 zk+T 

Uncertain state of interest 

Measurement received at fusion center 

(Local) Measurement of state 

βk βk+1 βk+T 
Packet Erasure Channel Model 

Figure 2.1: Markov chain with packet erasure channel.

2.1.1 Mutual Information

Let XT = {x1, · · · ,xT } be the sequence of states over the time interval from 1 to T . Let YT =

{y1, · · · ,yT } be the future measurements to be taken over that same interval where yt = {y1
t , · · · ,ynt }.
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Similarly, let BT = {b1, · · · ,bT }, where bt = {b1t , · · · , bNt }, be an indicator variable describing the network

configuration over that same interval where bnt ∼ Bern (βnt (st)) is a binary variable drawn from a Bernoulli

distribution with probability βnt . Next, let ZT be similarly defined as YT with the exceptions that these are

only the measurements received at the fusion center. Finally, let zn:mi:j be the set of measurements taken by

sensors n through m over the time interval from i to j (with similar definitions for yn:mi:j and Bn:mi:j ).

In this work the mutual information I(XT ;ZT ) is used as the measure of information and is defined

as the expected reduction in entropy:

I(XT ;ZT ) = H (XT )−H (XT |ZT ) (2.5)

where H (XT ) is the entropy of XT and H (XT |ZT ) is the conditional entropy given the measurement

sequence ZT .

Calculation of mutual information for a Markov chain can be simplified by exploiting several key

properties. A common approach is to apply the mutual information chain rule over time in order to derive a

(temporally) sequential description of mutual information [56]. Since this work is concerned with distributed

planning the chain rule of mutual information is instead applied over the vehicles first and then time.

I(XT ;ZT ) =
N∑
n=1

I
(
XT ; zn1:T |z

1:n−1
1:T

)
=

N∑
n=1

T∑
i=1

I
(
XT ; znt |zn1:t−1, z1:n−11:T

)
=

N∑
n=1

T∑
i=1

I
(
xt; z

n
t |zn1:t−1, z1:n−11:T

)
(2.6)

The first equality is due to the chain rule applied over vehicles and is shown graphically in Figure 2.2. The

y-axis represents the time from 1 : T and the x-axis the vehicle number from 1 : N . Each dot represents

a measurement znt . The second equality is from the chain rule applied over time for each vehicle. This is

I (X T ;ZT ) =

+

I (XT ;z11:T ) I (X T ;z21:T |z
1
1:T ) + . . .

+ . . .=

Figure 2.2: Graphical representation of the chain rule of mutual information.
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shown graphically in Figure 2.3 for vehicle 3. The third equality is due to the Markov structure [56].

Figure 2.3: Graphical representation of the chain rule applied over time for vehicle 3.

The presence of the packet erasure channel complicates the calculation of the mutual information.

However, additional structure in the graphical model can be exploited. In particular, from the Law of Total

Probability [62] the term under the summation in (2.6) can be rewritten

I
(
xt; z

n
t |zn1:t−1, z1:n−11:T

)
=
∑
χk

{I
(
xt;ψ

n
t |ψn1:t−1, ψ1:n−1

1:T

)
|Bt,n = χk} · pB(χk)

(2.7)

where ψnt is the specific set of measurements received at the base station for a given Bt,n, i.e. with

ψnt =


ynt bnt = 1

∅ bnt = 0

(2.8)

The probability distribution function pB(χk) describes the indicator vector Bt,n. Because the indicator

variable is binary, Bt,n comes from the discrete power set 2|Bt,n| and thus the probability of every possible

vector can be determined through enumeration from the packet erasure channel model. For example, for the

case of a single sensor over 5 time steps, if χk = [1, 0, 1, 0, 0]T then pB(χk) = β1(1− β2)β3(1− β4)(1− β5).

Figure 2.4 graphically shows this calculation. The white dots represent a dropped measurement and the

black represent a successful transmission at one instance in time/vehicle for the computation.

Calculation of I
(
xt;ψ

n
t |ψn1:t−1, ψ1:n−1

1:T

)
is still difficult in general, so for the purposes of planning, this

work assumes that a linearized, Gaussian model captures the dynamic behavior of the probability distribution

of p(xt) well enough. Linearizing the state dynamics about the trajectory of the mean of p(xt), the state

equations become

xt+1 ≈ Φt · (xt − µt) + Γt ·wt + fx(µt, 0)

yn,t ≈ Hn,t · (xt − µt) + vn,t + hn(µt, sn,t, 0)

(2.9)
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Figure 2.4: Graphical representation of the mutual information over the total probability.

where Φt = ∇xfx(µt, 0), Γt = ∇wfx(µt, 0), Hn,t+1 = ∇xhn (µt, sn,t, 0), and the process noise wt and sensor

noise terms vn,t are assumed to be Gaussian white noise with covariance matrices E[wtw
T
t ] = Qt and

E[vn,tv
T
n,t] = Rn,t. The closed-loop trajectory of the mean µt depends on the actual future measurements

that will be taken by the sensors. As a result, an additional assumption is needed, namely that the maximum-

likelihood measurements are taken. In this case the closed loop trajectory of the mean of the system given

by Equation 2.9 is equivalent to the open loop trajectory of the mean of the initial distribution, i.e.

µt+1 = fx(µt, 0) ≡ fµ(µt). (2.10)

Given the linear system description in Equation 2.9, the mutual information I
(
xt;ψ

n
t |ψ1:N

1:t−1, ψ
1:n−1
t

)
can now be derived. Let Mn−

t and Mn+
t be the information matrices (inverse covariance matrices) for

the state xt at time t given the measurements {ψn1:t−1, ψ1:n−1
1:T } and {ψ1:N

1:t−1, ψ
1:n−1
t , ψnt }, respectively. The

entropy of a Gaussian distribution is[1]:

H(x) = −1

2
log [(2πe)p|M |] (2.11)

where x ∈ Rp and M ∈ Rp×p is the information matrix, so the mutual information is:

I
(
xt;ψ

n
t |ψn1:t−1, ψ1:n−1

1:T

)
=

1

2

(
log |Mn+

t | − log |Mn−
t |
)
. (2.12)

The information matrices can be computed sequentially from an initial information matrix M0 = P−10

using Kalman filter and Kalman smoother equations [50]. The Kalman smoother equations are needed

because the measurement set includes measurements from future times, i.e. to properly include ψ1:n−1
1:T .

However, it will be shown in Section 3.1.1 that computing a different form of the mutual information that

does not require a smoother results in the same optimal trajectory.
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2.2 Specific Models

This section defines the specific models used throughout both the simulation work and the flight

experiments. These models are used in the computation of the utility function. Note that the planning

algorithms are not limited to these specific models.

2.2.1 Communication

Two communication schemes are considered for this work direct and multi-hop. Direct communication

assumes that each aircraft communicates directly with the fusion center. The multi-hop scheme allows for

communications to hop through the other aircraft to the fusion center. For the work in this thesis both of

these schemes model each individual link as a packet erasure channel based on empirical data.

2.2.1.1 Empirical Link Model

The communication link model was based on empirical data gathered in experiments between 2

unmanned aircraft along with an unmanned aircraft described in Section 4.2 communicating with the base

station where the wireless communication is the 802.11 protocol at 2.4GHz based on Atheros WiFi cards.

Figure 2.5 is a plot of this data. This data was based on 21 flight experiments on 6 different days between

2013-03-22 and 2013-06-07. The hardware utilized for these experiments is described in detail in Section 4.2

with the following summarized parameters:

• UDP Transmission

• Messages sent at 1Hz

• 40 byte packets

• 802.11b Ad-hoc protocol

• B.A.T.M.A.N. advanced routing protocol (version 2012.1)

• Atheros Mini-PCI Express hardware

• 63mW transmit power
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Figure 2.5: Packet Loss versus Range data based on experimental data.

• Omni-directional antennas

The fit to this function is the erfc function that was fit using least squares with the resulting function:

βi,jt (sit, s
j
t ) = .5 ∗ erfc

(
‖sit − sjt‖ − 461

195

)
− 0.085 (2.13)

where βi,jt (sit, s
j
t ) is the link probability of a direct transmission between nodes i and j. This function is

utilized as the individual link model for the utility function and is assumed independent of the number of

links for the experiments flown.

2.2.1.2 Direct Communication

The direct communication model is where the sensor fusion is done at a ground station and each

vehicle has a direct communication link to the station as shown in Figure 2.6. The direct communication

case assumes that the vehicles are connected to each other through the ground station. In this case the

packet erasure model described in Equation 2.4 is:

Prob(znt = ynt ) = βnt (snt )

Prob(znt = ∅) = 1− βnt (snt )

(2.14)
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where the term βnt (snt ) for vehicle n is only a function of it’s own sensor state snt at time t and the value is

drawn from the empirical link model in Equation 2.13.

Figure 2.6: Overview of direct communication.

2.2.1.3 Multi-hop Communication

The multi-hop communication scheme allows aircraft to take advantage of other aircraft in the network

as relay nodes as shown in Figure 2.7. Multi-hop communication has the potential to improve the perfor-

mance of the network by increasing the coverage area. As in the direct communication scheme, multi-hop

communication models an individual link with the empirical model so that the probability of a successful

transmission from vehicle i to j at time t is βi,jt (st). Note that this individual link probability is assumed

to be only a function of the positions of vehicles i and j, i.e. there is the assumption of no interference from

the other vehicles and the value is taken from Equation 2.13.

Figure 2.7: Overview of multi-hop communication

To model the probability of the entire multi-hop chain, we use the total probability over all of the
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possible routes the message could take from the transmitting vehicle n to the fusion center b:

βnt (st) =
∑

all routes n→b

p (success|routek) p (routek) (2.15)

Where p (success|routek) is the probability of the packet reaching the fusion center given that it takes a

specific route k. Since we assume each link is independent, this can be written as:

p (success|routek) =
∏

(i,j)∈routek

βi,jt (st) (2.16)

The term p (routek) is the probability of the route k being chosen, which will depend on the implementation

of the routing algorithm chosen. For the remainder of this dissertation the assumption is made that the

algorithm will always choose the route with the highest probability of a successful transmission:

route∗k = arg max
routek

 ∏
(i,j)∈routek

βi,jt (st)

 (2.17)

This results in a simplified calculation for the probability of a successful transmission:

βnt (st) = p (success|route∗k) (2.18)

2.2.2 Sensing

In this work, two different sensing problems are considered to evaluate the algorithms. The first

of these looked at utilizing RF signal strength as a range measurement to localize ground targets. For

the experimental work both 2.4GHz and 433MHz RF emitters were utilized. The second sensing problem

involves localizing moving ground targets using bearings-only measurements. The following sub-section

describes both the state and measurement equations for both of these classes of sensing problems.

2.2.2.1 Stationary RF Emitters

Localizing stationary RF emitters is based on measuring the signal power at the sensing aircraft. The

signal power Pp,s received at the sensor location, st at time t, from an emitter at location pt = [xt yt]
T

can

be described by the empirical path loss model [32]

Pp,s = P0

(
d0

‖pt − st‖

)α
Gp,s (2.19)
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where P0 and d0 are reference power and reference distances, and α is the path loss exponent or the prop-

agation decay exponent which is typically restricted to 2 ≤ α ≤ 6 depending on environmental factors like

atmospheric conditions and the objects present in the environment. Received signal power is often expressed

in decibels as

P dbp,s = κ− α10 log10 (‖pt − st‖) + ν (2.20)

where κ = 10 log10 P0d
α
0 and ν = 10 log10Gp,s is an additive noise term. Various fading channel models can

be used to describe ν, depending on the environment. The simplest form is to use additive white Gaussian

noise (AWGN). A Rayleigh or Rician distribution can also be utilized for certain types of channels [49].

Figure 2.8 shows P dbp,s data gathered using the NexSTAR UAS [39] over two flight days from four different

sources. A least squares fit was performed on this data to calculate values α = 3.48 and κ = 10.61.
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Figure 2.8: RSSI data gathered on July 12, 2011

This work uses a discrete time formulation for the emitter dynamics and measurement equations.

For this work, only stationary emitters are considered. The radio parameters κ and α are affected by the

environment and can change over the course of a day, so they are included in the system state. Thus, for
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static emitters the state xt at discrete time t is as follows:

xt =



xt

yt

κt

αt


(2.21)

The received signal power is a function of receiver position which is treated as the input to the system, i.e.

ut = st = [xs,ys]
T

.

The state equations include process noise terms to prevent filter saturation and provide flexibility in

filter design and tuning. A linear state update equation with process noise wk is assumed so that

xt+1 = fx(xt,ut,wt) = xt + wt (2.22)

For this work RSSI measurement provides received power in decibels, so the measurement equation

is:

yt = P dbt,r = h(xt,ut, vt)

= κt + 10αt log10 ‖(xt, yt)− (xs,t, ys,t)‖+ vt

(2.23)

where the measurement noise vt is assumed to be Gaussian.

2.2.2.2 Bearings-only Tracking of Moving Targets

The second sensing problem involves UAS localizing moving ground targets using bearings-only mea-

surements. The state, dynamics, and measurement functions for this problem are defined as:

xt =



xt

yt

vx,t

vy,t


(2.24)

xt+1 = fx(xk,wt) =



xt(1) + ∆t · xt(3) + wt(1)

xt(2) + ∆t · xt(4) + wt(2)

xt(3) + wt(3)

xt(4) + wt(4)


(2.25)
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yt = θt = h(xt, st,vt) = tan−1
(

xt(2)− st(2)

xt(1)− st(1)

)
+ vt (2.26)

where θt is the bearing angle from the sensor to the emitter, vx,t and vy,t are the velocity components of

the targets, wt(1) = wt(2) = 1m and wt(3) = wt(4) = 0.1m/s are the process noises for the position, and

velocity respectively and the measurement noise vt is a zero-mean gaussian noise with a standard deviation

of 10o.

2.2.3 Vehicle

In this work the sensor state, radio state, and aircraft state are all the same variable st. The control

of sensors/radio is modelled as a small UAS under autopilot control. It is assume that an autopilot provides

low level control to the aircraft that is flying at a fixed altitude and airspeed, v0. The only input into the

aircraft is the turn rate, ut, that controls the trajectory of the aircraft. The dynamic equation for a given

time step ∆t is the exact solution to the continuous unicycle kinematic model with constant turn rate:

st+1 = fs(st,ut) =



xs,t+1

ys,t+1

zs,t+1

ψs,t+1


(2.27)

=



xs,t + v0 · sinc
(
1
2ut∆t

)
cos
(
ψs,t + 1

2ut∆t
)
·∆t

ys,t + v0 · sinc
(
1
2ut∆t

)
sin
(
ψs,t + 1

2ut∆t
)
·∆t

zs,t

ψs,t + ∆t · ut


for |ut| ≤ ωmax and where (xs, ys, zs) is the 3D position of the aircraft, ψs is the heading angle relative to

North, and sinc(x) is the sine cardinal function.

sinc(x) =


sin(x)
x

1

x 6= 0

x = 0

(2.28)
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Chapter 3

Distributed Information Gathering Optimization Algorithm

This chapter examines the problem of distributed path planning for a mobile sensor network comprised

of communication-aware robots performing general information gathering missions. Mutual information is

used to compute utility functions that are optimized locally by each robot. Each robot computes the control

input in a distributed manner that results in a combined action that can be bounded by the optimal central-

ized result utilizing submodularity in certain cases. It is shown that when the communication model includes

multi-hop communication to expand the coverage of the sensor network, the property of submodularity is

lost. The algorithms are evaluated in simulation by application to bearings-only tracking and to tracking an

RF emitter based on signal strength with multiple aircraft and targets.

3.1 Planning

The overall objective of this work can now be defined. The control inputs unt drive the sensor states

snt which in turn determine the measurements znt (snt ) and the information contained in them, where this

dependence on the sensor state was dropped in the discussion of the previous section. In particular, the

sensor state explicitly enters calculation of the erasure channel probabilities βnt (snt ) and the Jacobians of the

measurement equations Hn,t+1(snt ) = ∇xhn (µt, sn,t, 0).

Let the input vector over the planning horizon be u = {u1, · · · ,uT } and the sensor state vector over

the planning horizon be ST = {s1, · · · , sT }. The global problem of interest here is:
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Problem 1 (Maximize Mutual Information)

maximize J1(u) = I(XT , ZT (ST (u)))

subject to ut ∈ Ut, ∀t ∈ [1, · · · , T ]

st+1 = fs (st,ut) .

(3.1)

For a candidate input u the cost function J1(u) = I(XT , ZT (ST (u))) can be solved numerically since

2|Bi| is a finite set. However, it requires a summation over the entire power set which has 2|Bi| = 2T ·N

elements (Equation 2.7). An approximation is desired that can yield good measurements when optimized,

but at reduced computational cost. This need motivates the introduction of a modified measurement model.

In particular, assume the fusion center receives the expected amount of information per measurement, which

is realized by assuming the sensor noise covariance has its expected value. In other words, define and use

the new measurement set Ỹi with modified noise covariances R̃−1n,t = E{bnt R−1n,t} = βnt R
−1
n,t. The new modified

information measure can now be expressed as the mutual information I(XT ; ỸT ) between the states and the

new measurement set. This leads to a new problem statement:

Problem 2 (Maximize Modified Mutual Information)

maximize J2(u) = I(XT , ỸT (ST (u)))

subject to ut ∈ Ut, ∀t ∈ [1, · · · , T ]

st+1 = fs (st,ut) .

(3.2)

3.1.1 Distributed Optimization

This work considers distributed planning algorithms across the sensor network. The distribution is

done over a pre-defined order that comes from the first line of Equation 2.6, i.e. vehicle n plans its path

given the paths of the previous n− 1 vehicles and then sends the plan to vehicle n + 1. Previous work has

looked at applying the chain rule over time first instead of the vehicles [56, 22]. The major disadvantage of

splitting the mutual information by vehicles first instead of time is that we now have measurements from

future times in the term z1:n−11:T .

This term complicates calculation of the information filter at each step, e.g. by running the Kalman

information filter equations forward to time T processing all of the measurements in {znt , zn1:t−1, z1:n−11:t } and
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then running a Kalman Smoother [50] back to time t to process {z1:n−1t+1:T }. To avoid each vehicle having to

do this complex calculation, each robot solves a different local optimization that provides the same result

with less computation. In particular, each robot takes advantage of the fact that:

arg max
zn
1 : T

I
(
XT ; zn1: T |z1:n−11:T

)
= arg max

zn
1 : T

I
(
XT ; z1:n1:T

)
(3.3)

which is derived as follows:

zn∗1: T = arg max
zn
1 : T

I
(
XT ; zn1: T |z

1:n−1
1:T

)
= arg max

zn
1 : T

[
H
(
XT |z1:n−11:T

)
−H

(
XT |z1:n−11:T , zn1: T

)]
= arg max

zn
1 : T

[
−H

(
XT |z1:n1:T

)]
= arg max

zn
1 : T

[H(XT

)
−H

(
XT |z1:n1:T

)]
= arg max

zn
1 : T

I
(
XT ; z1:n1:T

)
(3.4)

This holds because both H
(
XT |zn−1T

)
and H (XT ) are constant with respect to zn1: T . The utility function

for a given zn1: T is computed by using the version of Equation 2.6 that performs the chain rule over time

first. This results in the entire calculation moving forward in time and not having to use the smoother

at each step. This is shown graphically in Figure 3.1 comparing processing the measurements across time

first instead of vehicles. This allows us to reformulate the modified optimization problem with a new local

Figure 3.1: Graphical comparison of the two forms of the chain rule.

optimization objective Jn3 (un) such that each robot solve:
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Problem 3 (Maximize Distributed Modified Mutual Information)

maximize Jn3 (un
T) = I(XT , ỹ

n
1:T (SnT (unT ))|Ỹ n−1T )

∀ n ∈ {1, . . . , N}

subject to unt ∈ Unt , ∀t ∈ [1, · · · , T ]

snt+1 = fns (snt ,u
n
t )

(3.5)

3.2 Performance Bounds

The goal of this section is to establish bounds for distributed optimization of Problem 3 against solving

the centralized Problem 2. The discussion that follows will focus on selection of the control inputs u with

the understanding that these lead to the measurements used in the calculation of the mutual information.

The input vector for each sensor over the planning horizon will be denoted un = {un1 , · · · ,unT } so that the

total input vector can also be expressed as u = {u1, · · · ,un}. Let U = U1 × U2 × · · · × UN be the set of

admissible control input sequences where Un is the control set for sensor n. The optimal input is defined as:

u∗ = arg max
u∈U

J (u) (3.6)

with J∗ = J (u∗).

When discussing distributed optimization, it is also helpful to take a set-theoretic perspective of

the optimization process. Under this perspective, let the objective be represented as a function over the

set of sensors S, denoted by J(S) which is understood to be equivalent to J(u). Further, if E ⊂ S is a

subset of sensors, e.g. E = {1, 3, n + 1, N}, then J(E) is understood to be the cost computed just from

those sensors, e.g. J(E) = J([u1,u3,un+1,uN ]′). Let {n} represent the set that only contains the nth

sensor, let S<n = {1, 2, · · · , n − 1} be the set of all sensors with label less than n, and let S−n = S \ n =

{1, 2, · · ·n− 1, n+ 1, · · ·N} be the set of all sensors except n. Then the objective function can be rewritten.

J(u) = J(S) =

N∑
n=1

Jn ({n}, S<n) . (3.7)
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3.2.1 Direct Communication Assessment

The direct communication model assumes that the vehicles are connected to each other through the

ground station and transmit both their planned trajectories and the measurements they take. Some known

results for sequential distributed optimization of mutual information will be presented. Recall from Equation

2.14 that the term βnt (snt ) for vehicle n is only a function of it’s own sensor state snt at time t. This results in

a form of the utility function that is submodular since each sensor contribution is independent conditioned

on the state[56].

The decomposition of the objective function in Equation 2.6 motivates a sequential distributed op-

timization approach whereby each sensor optimizes a local function given the control inputs of the sensors

with smaller labels. These labels can also be viewed as an ordering or prioritization, so the approach is

referred to as hierarchical. In particular, each sensor solves the following equation.

un,h = arg max
un∈Un

Jn(un,u
1:n−1,h)

= arg max
un∈Un

Jn({n}, Sh<n).

(3.8)

In general, distributed hierarchical optimization as described in Equation 3.8 has guaranteed perfor-

mance bounds when the objective function is non-decreasing (adding more members to the input set never

decreases the cost) and submodular [28]. Submodularity is a diminishing returns property whereby the

incremental value of adding another input is larger if added to a smaller set. Formally, define the marginal

return or incremental cost of adding j to set E as ρj(E) = J({j} ∪ E)− J(E). A set-valued function J(E)

is submodular if the following is true.

ρj(E2) ≥ ρj(E1), ∀E2 ⊆ E1 ⊆ E and j ∈ E − E1. (3.9)

It has been shown that mutual information between the state sequence XT and a set of observations

is submodular when the observations are independent of each other conditioned on the state [56]. This is

the case with direct communication since the control inputs (hence sensor state and information content)

achievable by one sensor are not limited by the actions of the other sensors.

Let uh = [u1,h, · · · ,uN,h]′ be the global control input vector that results from the distributed opti-

mization with Jh = J(uh) being the resulting utility. Because the mutual information is non-decreasing and
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submodular for direct communication, the result from the hierarchical distributed approach will be no worse

than half of the global optimal solution, i.e. 1
2J
∗ ≤ Jh ≤ J∗.

A proof of this result is given in Appendix A.1. Having this guaranteed lower bound insures that the

hierarchical approach will never produce arbitrarily bad results compared to the global optimal solution.

Implementation of the hierarchical approach trades optimality for communication overhead. The

overall communication overhead scales linearly in the number of sensors as each sensor requires knowledge of

one more control input than the previous (higher priority) sensor. Control inputs could be disseminated from

each sensor to all the sensors that will eventually need it through a broadcast method, or each successive

sensor could receive the previous control inputs, add its own, and then forward the information to the

next sensor. This procedure could be realized through a token ring protocol. The distributed optimization

procedure converges to a result after each vehicle performs its local optimization once, eliminating the need

to iterate multiple times.

A special case of direct communication is the perfect communication assumption. Under perfect

communication, Problem 1 and Problem 2 are identical. The perfect communication assumption holds in

certain scenarios where either the vehicles are in an area where they will always be close to each other

relative to their maximum communication range, or they are using a communication scheme that does not

have range limitations such as satellite.

3.2.2 Multi-hop Communication Assessment

The communication model will now be expanded to allow multi-hop communication. The probability

of each message getting through the network was derived in Equation 2.18 where each probability was

potentially a function of the positions of every aircraft in the network. This communication model results in

a utility function that in general loses the submodularity property due to the loss of independence between

the measurements since the trajectory of one aircraft can affect the βnt (st) terms by acting as a relay. The

following illustration is a counter-example scenario which shows where submodularity fails.

The example scenario in Figure 3.2 is for one step look-ahead planning for a target with position xt

and prior information M− being observed by sensors measuring the 1-D position of the target with some
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(a) (b)

Figure 3.2: Example showing submodularity breaking down since (a) no information is gained with two
robots but (b) some information is gained when a third completes the multi-hop chain.

information contribution Ij . The sensor positions given as x1, x2, and x3 and the communication is based

on the disc model with:

βi,j =


1 ri,j ≤ r0

0 ri,j > r0

(3.10)

where ri,j the distance between sensor i and j. In this example rb,1 = r1,2 = r2,3 = r0 and therefore

r1,3 = 2r0. Also, since the state space is 1-D, the variables in the cost function are scalars with the utility

defined as:

J(A) = log

∣∣∣∣∣∣M− +
∑
j∈A

βjIj

∣∣∣∣∣∣ (3.11)

We define the sets S = {1}, T = {1, 2}, j = {3}. For submodularity to hold the relationship must be true.

ρj(S) ≥ ρj(T ), ∀ S ∈ T (3.12)

Where ρj(S) = J(j ∪ S)− J(S). In the example scenario in Figure 3.2(a) the function is written as:

ρj(S) = J ({3, 1})− J ({1})

= log
[
M− + β1I1 + β3I3

]
− log

[
M− + β1I1

]
= 0

(3.13)

Since β3 = 0 because vehicle 3 is outside of communication range from vehicle 1 (and hence the base) without
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vehicle 2 acting as a relay. In Figure 3.2(b) the function is written as:

ρj(T ) = J ({3, 1, 2})− J ({1, 2})

= log
[
M− + β1I1 + β2I2 + β3I3

]
− log

[
M− + β1I1 + β2I2

]
= log

[
M− + I1 + I2 + I3

]
− log

[
M− + I1 + I2

]
> 0

(3.14)

Which implies that ρj(S) < ρj(T ), which violates submodularity.

3.3 Monte Carlo Simulations

The purpose of this section is to assess the algorithms presented in this chapter. All of the scenarios

utilized in the simulations will involve unmanned aircraft systems (UAS) localizing and tracking ground

targets. The sensing, communication, and vehicle models utilized in this section can be found in Section

2.2. The Monte Carlo simulations below consider two different sensing problems localization of RF emitters

using RSSI and bearings-only tracking of moving targets.

3.3.1 Modified Mutual Information

The exact mutual information from Problem 1 is compared against the modified mutual information

from Problem 2, specifically looking at the direct communication case. A numerical comparison is run

between Problem 1 and Problem 2 to show how close the resulting solution is for both formulations. The

set of 100 different initial positions, (x, y), shown in Figure 3.3 was run to compare the formulations. The

truth value for κ and α are 11.5 and 3.5 respectively and the measurement noise vt is zero-mean Gaussian

noise with a standard deviation of 2.9, and these values are all based on empirical data [48]. The scenario

involves localizing 3 stationary RF radio sources by 3 UA as described in Equations 2.21, 2.22, and 2.23.

Since the computational complexity of computing Problem 1 grows with 2N ·T each run was only for 3 time

steps across the 3 vehicles. The value of the cost functions resulting from Problem 1 and Problem 2 are

examined in Figure 3.4 for one set of initial conditions (the red numbers in Figure 3.3) shown in Figure 3.3.

This plot shows for this one example that the solution to Problem 2 maps exactly to the optimal solution

of Problem 1. Figure 3.4 spans over a discrete range of the admissible inputs for 3 vehicles over 3 time
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steps (9 dimensional) that are mapped into the x-axis. The plot of the utility of the full mutual information

calculation (Problem 1) is sorted from lowest to highest, and this same ordering is applied to the results of

the utility from the modified mutual information, Problem 2. Note that what appears to be a constant offset

between the two solutions has some variation and was not expected.
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Figure 3.3: The Initial Conditions for the batch runs for the comparison of Problem 1 vs. Problem 2
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Figure 3.4: Comparing the value of the utility functions over the entire range of control inputs. Note, since
this case has 9 degrees of freedom the x-axis is the run number where the entire set of possible inputs is
discretized.

Next we examine the entire batch of 100 runs for Problem 1 vs. Problem 2 shown in Figure 3.3. The

vehicles were purposefully placed in the region where communication dropouts are frequent to best illustrate

the differences between Problem 1 and Problem 2 since they differ in how they factor in the communication

model. Figure 3.5 contains a numerical comparison between the solutions to Problem 1 and 2 for the batch
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Figure 3.5: (a) Histogram showing how J1(u∗2) compares to J∗1 and (b) a comparison of how
J1(u

∗
2)
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1

compares

against the difference in the control variables |u∗1 − u∗2|.

of cases shown in Figure 3.3. Figure 3.5(a) contains a histogram showing J1(u∗2)/J∗1 , which is the mutual

information cost of Problem 1 evaluated for the optimal solution u∗2 of the modified mutual information of

Problem 2 divided by the optimal solution to Problem 1. In every case for this set of example scenarios

the solution to the modified mutual information was within 99% of the optimal value of the full mutual

information reinforcing the validity of using Problem 2. Figure 3.5(b) looks at this difference as a function

of the difference in the control variable u. Note that the span of the y-axis is between 0.995 and 1.0 of the

optimal. Also, the majority of final control inputs were very similar between both formulations of the mutual

information. This further enforces the validity of using the much more computationally tractable modified

mutual information solution contained in Problem 2.

If the βnt (snt ) terms are independent of each other, meaning that the communicating vehicles do not

interfere with each other, then the measurements are independent of one another conditioned on the state, the

modified mutual information utility is submodular, and the hierarchical solution to Problem 2 is guaranteed

to be no worse than half the centralized optimal solution to Problem 2. The remainder of the comparisons

done in this chapter will focus on the modified mutual information formulation in Problem 2.
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3.3.2 Comparing Centralized to Distributed Planning

The performance of the distributed algorithm is compared against a centralized solution using 100

test cases that were run for three communication cases; direct communication with no dropouts (essentially

β = 1 always), the direct communication model with packet loss, and the multi-hop communication model.

The distribution of the starting positions for these scenarios is shown in Figure 3.6. The figure also shows

the motion of the targets for the mission length, note that only two of them move. The simulated cases

involved three aircraft performing bearings-only tracking of three moving ground targets whose state is the

planar position and velocity as described in Equations 2.24, 2.25, and 2.26. For each type of communication

model the aircraft were given the same 100 random starting points and planned a trajectory for the next 60

seconds with the sensors able to take measurements at 1Hz. The optimization was performed by a genetic

algorithm.
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Figure 3.6: Batch Setup

Figure 3.7 is a series of histograms comparing the performance of the distributed hierarchical algorithm

against the global optimum. For each random set of initial conditions the value of the utility function of

the distributed hierarchical algorithm is calculated as a fraction of the global optimum. For all three cases

the algorithm does better than the 1
2 lower bound, even in the multi-hop case where this bound is not

guaranteed. In fact, all 100 of the runs for the perfect communication and the direct communication model

using a fixed hierarchy did better than 85% of the global optimum with 90% of the runs for both of these
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Figure 3.7: 100 Runs Comparing Hierarchical to Global Optimal (a) Perfect Comm., (b) Direct Comm. (c)
Multi-hop Comm.

communication models doing better than 95% of the global optimum.

For the multi-hop case Figure 3.7(c) shows that the hierarchical algorithm still does a good job in many

cases with a performance within 70% of the global optimal for all 100 cases. This plot shows that for some

sensing problems, even without the guarantees of submodularity we can still expect good performance from

the hierarchical algorithm. However there are scenarios where this algorithm will give poor performance.

The following set of batch runs once again involves localizing a stationary RF emitting node using the

received signal strength. These test runs were set up specifically for cases where multi-hop communication

is needed for good performance. This also results in illustrating scenarios where the hierarchical algorithm

will fail to produce good performance. Figure 3.8 shows the problem setup. The top portion of the figure

shows where the vehicle’s were randomly position to start out, the zones are separated by a distance that

still allows some communication. This setup forces the aircraft to form a chain from the aircraft in the

zone furthest from the base station using the others as a relay back. Typically the best trajectories for

this problem involve 3 of the aircraft forming a communication chain for the aircraft closest to the target

which contributes most of the sensing improvement. These sets of aircraft labeled 1 to 4 were then randomly

sorted across the zones as seen in the bottom of Figure 3.8. For certain assortments of aircraft this results

in poor performance for the hierarchical algorithm. Figure 3.9 shows a histogram comparing the results of

the hierarchical planner against the global optimal result. Note the in some cases the hierarchical algorithm

resulted in poor performance below 50% of the centralized optimal solution. However, in general most of the
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Figure 3.8: Simulation Setup

runs were still above 50%. Figure 3.10 shows the starting positions for both the three best and three worst

performances relative to the global optimum. As expected the cases where the vehicles are setup near the

best ordering of 1→ 2→ 3→ 4 the hierarchical comes close to the global optimal, while in the cases where

the labelling is in the wrong direction we see poor performance.
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Figure 3.9: Batch runs comparing the fraction of optimal that the hierarchical results

To further show the importance on the ordering for the hierarchical algorithm in the multi-hop commu-

nication case two sets of batch runs were simulated, the first with the best possible ordering, 1→ 2→ 3→ 4,

and the worst case ordering of 4 → 3 → 2 → 1. The resulting histograms are shown in Figure 3.11. These

two plots illustrate where the performance of the hierarchical planning can suffer in certain scenarios. How-

ever, even in this worst case positioning, that majority of the runs were still above 50% of optimal. For these
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Figure 3.10: Initial Conditions resulting in the (a) best and (b) worst performance
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Figure 3.11: Looking at the fraction of optimal for (a) correct chain and (b) the reverse

types of scenarios heuristics can also be applied such as re-ordering the labels on the vehicles.

3.4 Summary

This chapter examined the problem of distributed path planning for sensor networks composed of

vehicles using packet erasure channels for communication. The local utility function used by each vehicle

was derived as the local contribution to the mutual information of the entire team. The planning algorithm

presented maximized the mutual information in a distributed manner for direct communication model and

for systems employing multi-hop communication schemes. A distributed planning algorithm was presented

that was submodular for the direct communication scheme and could thus be bounded to within half of the

global optimal. It was shown that submodularity breaks down for the multi-hop communication scheme.

Over a large batch of runs it was shown that the hierarchical algorithm still has decent performance. Monte

Carlo simulations were also employed to examine the sub-optimality of assumptions to make the problem

tractable and these simulations showed that the performance was close to the full calculation of mutual

information.
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Chapter 4

UAS Description

This chapter contains an overview of the hardware and software systems used to perform flight ex-

periments to support the algorithms developed in this dissertation. This system was built on previous work

[5, 6]. This work primarily utilized two different UAS, the NexSTAR UAS for WiFi localization, and the

multi-aircraft RF sensing UAS comprised of the Tempest UAS and the Skywalker X8 UAS. In this work

NexSTAR UAS was used for WiFi localization experiments. Both the Tempest and Skywalker X8 were

used for 433MHz localization, communication link modelling, single aircraft path planning, and two aircraft

cooperative planning experiments.

4.1 NexSTAR WiFi Sensing UAS

The NexSTAR WiFi sensing UAS shown in Figure 4.1 was utilized for localization of RF beacons at

2.4GHz. The detailed results of those experiments are outlined in Chapter 5. The NexSTAR UAS design

has over 100 accumulated flights on three separate airframes.

Figure 4.1: NexSTAR WiFi Sensing UAS
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Table 4.1: NexSTAR Airframe Specifications

Wingspan 1.75m
GTOW 4.8kg
Motor Neu 1506 3D
Battery 10Ah 5S Lipo
Endurance 45 minutes
Launch Catapult

4.1.1 NexSTAR Airframe

The NexSTAR UA was designed for networking and autonomy software prototyping. The airframe

is based upon the almost ready-to-fly kit by Hobbico, and was modified to house avionics and payload

hardware. This commercial approach provides for a cheap airframe that requires approximately a week to

convert to a semi-autonomous airframe (Appendix A in Ref. [6]). A pin was added to the airframe to enable

rail launching. The airframe’s balsa and monokote construction allows for easy modification and repair. The

original NexSTAR UA was changed from a gas engine to an electric motor with approximately 45 minutes

endurance, though Hobbico now provides a kit with an electric motor.

4.1.2 Piccolo Avionics System

The NexSTAR UAS utilizes the Piccolo Plus Autopilot [33]. The Piccolo Plus can be commanded

either from a ground station through a dedicated 900MHz communication link, or an on-board supervisory

computer. The Piccolo Plus autopilot manufactured by Cloud Cap Technology [33] provides UA guidance

and control. The sensor suite includes an inertial measuring unit (IMU) with three-axis accelerations and

angular rates, GPS position, and an air data system for measuring static and dynamic pressure. The autopilot

accepts waypoint commands or provides a simplified kinematic model to higher-level guidance laws. The

Piccolo Plus autopilot includes a hardware-in-the-loop simulation capability that allows end-to-end avionics

testing in a lab setting. The Piccolo ground station is responsible for managing a direct 900 MHz wireless

link to one or more Piccolo avionics, supplying differential GPS corrections, and serving as a bridge to the

operator interface. The Piccolo provides a serial interface and software development kit (SDK) to allow an

on-board computer to receive telemetry data and issue commands. This capability was used extensively in
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this work.

4.1.3 WiFi RSSI Sensing Hardware

For the experiments presented here, the on-board computer is the PC Engines alix3d2 single board

computer [38], which runs the experiment and collects data. For the WiFi localization work the alix3d2

was setup running openWRT Backfire [37]. The openWRT framework was also utilized to cross-compile

the flight software. The WiFi sensing is done by an Atheros 802.11 mini PCI express card connected to

the alix3d2. The Atheros chipset was chosen because it is supported in Linux. Experiments were run using

either a regular 2.4GHz dipole antenna and a WiFi-Plus omni antenna [41] with a spherical pattern. The

spherical antenna was found to give better measurements since it was less sensitive to orientation changes

in the aircraft.

4.1.4 Software Architecture

The NexSTAR WiFi sensing UAS used a specific implementation of the NetUAS [7] system. In

this work several new features and modules were added to the NetUAS system including a general UKF

formulation, a turn-rate controller based on bank angle for the Piccolo Plus interface, an optimization class

based on Covariance Matrix Adaptation Evolution Strategy (CMA-ES)[17], and several smaller parts to

allow the localization part.

4.2 Multi-aircraft RF Sensing

The multi-aircraft RF sensing system shown in Figure 4.2 was designed specifically for controlled

experiments with RF localization, and multi-UA experiments involving both sensing and communication.

This built on the work from the NexSTAR WiFi sensing system.

4.2.1 Airframes

The Tempest Unmanned Aircraft is primarily fiberglass with carbon-fiber composite for reinforcement

in the wing spar and the lower surface of the wing [27]. Detachable wings have a span of 3.2m with a gross
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Figure 4.2: Overview of the multi-aircraft RF sensing system

take-off weight of 5.4kg. A smooth under surface and a folding propeller enables landing in grassy fields

and road surfaces with no landing gear. The Tempest utilizes an in-runner electric motor with a gearbox

manufactured by Neu Motors, a Castle Creations ICE speed control, a Graupner propeller, and a 11,000

mAh lithium polymer battery manufactured by MaxAmps providing endurance of approximately 60 minutes.

The table below summarizes the specifications of the Tempest Airframe.

The Skywalker X8 [34] UA was designed specifically for this research. The airframe is the Skywalker

X8 FPV aircraft which contains a large payload volume to house the required avionics and sensors. This

commercial approach provides for a cheap airframe that requires minimal effort to convert to a UA. The

foam construction results in a robust system for this type of application. The table below summarizes the

specifications of the aircraft.

4.2.2 SwiftPilot Avionics System

The SwiftPilot (Figure 4.3) from Black Swift Technologies (BST) is a lightweight, customizable, and

low-cost autopilot. The 70 x 34 x 27 mm package weighs 34 grams. Similar to the Piccolo Plus, the SwiftPilot

utilizes a 6 axis IMU, GPS, a dynamic pressure sensor for airspeed, and a static pressure sensor to determine

altitude. The SwiftPilot is the main component of the Black Swift Technologies RF sensing package that

enables work at three different frequencies including 2.4GHz WiFi, a 900MHz primary communication link,
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Table 4.2: Tempest Airframe Specifications

Wingspan 3.2m
GTOW 5.4kg
Motor Neu 1509 3Y
Battery 11Ah 5S Lipo
Endurance 60 minutes
Launch Winch

Table 4.3: Tempest Airframe Specifications

Wingspan 2.12m
GTOW 3.5kg
Motor AX2820 KV780
Battery 5Ah 4S Lipo
Endurance 35 minutes
Launch Hand Launch
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and a 433MHz module. The SwiftPilot allows access to every control loop in the cascaded PID controller

through the SwiftPilot SDK allowing higher level planning algorithms to perform robust trajectory planning

and following. The SwiftPilot allows both software and hardware in the loop testing utilizing the X-Plane

flight simulator. A provided SDK allows interfacing to the SwiftPilot through NetUAS over the 2.4GHz link.

Black Swift TechnologiesC Black Swift TechnologiesC

Figure 4.3: The BST SwiftPilot

4.2.3 RF Sensing Hardware

The BST [12] RF sensing system is used for measuring received signal strength of three different

protocols each at their own frequency. For this work specifically the 433MHz link is measured between

two HopeRF RFM22B FSK [36] transceiver modules. The radios return the address of the source radio

along with the signal strength, so there is no data association problem. The 433MHz RF sensor along with

the SwiftPilot are connected to an on-board avionics computer, the RouterStation from Ubiquiti [40]. The

avionics computer is running a custom version of the OpenWRT Linux distribution [37]. During data collec-

tion, ground based beacons shown in Figure 4.4 emit signals for the airborne system to read, and maintains

a log of its GPS based location measurements for use in post-processing and assessing the performance of

localization and tracking algorithms.

The 433MHz signal is reported as an 8 bit unsigned integer with a value from 0 to 255. This value

is converted to dBm signal strength using a chart from the RFM22B data sheet which shown in Figure 4.5.

All of the data gathered in the course of these experiments fits in the linear regime resulting in a conversion
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Figure 4.4: The RF emitting beacon.

function of:

P dbp,s = 0.51(RSSI)− 123.1 (4.1)

Figure 4.5: The fit from the HopeRF data sheet [35] with the function fit overlayed in green.

4.2.4 Software Architecture

For the multi-aircraft experiments modifications and additions to the NetUAS were made that were

specifically tailored for this work. Specifically, a new interface was implemented to interact with the 433MHz

sensor. The 433MHz sensor utilized a USB interface that returned an ASCII stream that included the emitter
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ID and RSSI measurement.

The networking between the different aircraft and ground nodes runs on an 802.11 multi-hop mesh

network utilizing the B.A.T.M.A.N. Advanced routing protocol [29] version 2012.1. This routing protocol is

seamlessly used by the distributed planning algorithms to coordinate the vehicles and send measurements

back to the fusion center. The sharing of plans and measurements was done for pre-determined IP addresses

in the mesh.

4.3 FAA Certification

All flight experiments to support this work were flown under an Certificate of Authorization (COA)

from the U.S. Federal Aviation Administration (FAA). The operation of unmanned aircraft systems in the

U.S. National Airspace System (NAS) is governed by the Federal Aviation Administration. All of the flights

to support this dissertation were flown in either the Table Mountain test site, Figure 4.6(a), and the Pawnee

National Grasslands site, Figure 4.6(b) [45]. The FAA required separate COAs for each area and each

airframe. This work also included securing a COA to allow multi-UA flight operations in a single COA area

for the multi-UA RF sensing system.

(a) (b)

Figure 4.6: Maps of (a) the Table Mountain test site and (b) the Pawnee National Grasslands test site.
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Chapter 5

Radio Frequency Localization Experiments

Unmanned aircraft systems are advantageous platforms for performing RF source localization. First,

UAS mobility enables rapid surveying of large areas. Second, the motion of the UA provides spatial diversity

in the measurement geometry, which can improve the observability problem and performance of the esti-

mation algorithm. Third, by flying overhead the aircraft can maintain much better line of sight (LOS) to

any nodes on the ground compared against a similar ground-based system. This greatly reduces the fading

(interference and noise) effects caused by multipath propagation in many scenarios, especially open areas

[49].

This chapter presents a formulation and flight test results for geo-localization of stationary RF nodes.

Two different frequencies were used for the experiments: (1) IEEE 802.11 (WiFi) nodes emitting at 2.4GHz

along with (2) 433MHz emitters. This chapter focuses on work done to localize 2.4GHz emitters using the

NexSTAR UAS. The sole sensor utilized for the localization is the received signal strength indication (RSSI)

measurement that is provided on-board. Measurements are received as packets that include the identifying

MAC address along with the RSSI measurement.

5.1 Localization of 2.4GHz Emitters

This work utilizes the unscented Kalman filter (UKF) [18] to perform RF source geo-localization. The

UKF is chosen over the more conventional extended Kalman filter (EKF) [50] because of the nonlinearities

of the RSSI measurement function. A sequential estimator is developed rather than a batch parameter

estimator because real-time estimates of the state and uncertainty are required for active sensing planning
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algorithms that can improve sensing geometry and estimation performance [46]. See Appendix A.2.2 for

more details on the filter used here.

Figure 5.1 below shows the RSSI data gathered using the NexSTAR UAS [39] over two flight days

from four different emitters. A least squares fit was performed on this data to calculate values for κ and α.
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Figure 5.1: RSSI vs. Range measurements from 4 flight experiments.[46]

It is assumed that the on-board sensor has a maximum detection range of 800m. As a result, the

estimator is always initialized with a position estimate chosen over a uniform random distribution from the

sensing aircraft within the detection range. Though this could lead to high initial errors, results will show

that the UKF was able to converge to a solution for the flight data that was gathered.

5.1.1 Results

The UKF was tuned using flight data (Figure 5.2) gathered on May 20th 2009 at the Table Mountain

test range [5]. The process noise, Q and initial covariance P0 were tuned to give fast convergence while

minimizing the final error. The GPS position of the node averaged over several minutes was assumed to

be the true position. The measurement noise R is based on a least squares fit of the RSSI vs. range data
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similar to what is seen in Figure 5.1. The Q, P0, R were set to:

Q =



10−2 0 0 0

0 10−2 0 0

0 0 5× 10−10 0

0 0 0 5× 10−9


(5.1)

P0 =



2× 104 0 0 0

0 2× 104 0 0

0 0 10−7 0

0 0 0 2× 10−4


(5.2)

R = [9] (5.3)

These three parameters are kept the same for all of the subsequent flights described in this work. Figure

5.2(a) shows an overview of the flight at Table Mountain along with the position estimates of the WiFi node

(computed offline). Figure 5.2(b) shows the estimate error compared to the node position with the 3σ error

bars. Note that the error does a good job of staying within these bounds. The results presented for the

tuning are specifically for the state vector incorporating the radio parameters.
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Figure 5.2: (a) Overview of the flight trajectory and estimated position of the WiFi source. (b) True position
errors with 3σ error bars.



www.manaraa.com

47

5.1.1.1 Comparison of two different filter designs.

The four state UKF is compared against a UKF that uses the position only as the system state to

demonstrate the improvement in having the radio parameters in the state. The two-state UKF keeps the

radio parameters κ and α fixed. These two filter formulations were compared for six localization experiments

spanning four flight days [5]. Table 5.1 shows a summary of the final error between the estimated position

and the GPS position. Incorporating the radio parameters into the UKF results in less error for each run,

with an average error reduction of 45.4%. This result matches other observations that show that the RF

environment can vary greatly over the course of one flight, let alone over multiple days [5]. The two different

antenna types used in these experiments are described in Section 5.1.1.3.

Table 5.1: Comparison of final error between the two UKF formulations

Date Antenna 2 State UKF 4 State UKF Error
Type Error (m) Error(m) Reduction

2009-05-20 Omni 45.45 31.87 29.9%
2009-05-12 Omni 67.52 28.33 58.0%
2009-05-12 Omni 80.34 35.44 55.9%
2009-03-13 Dipole 136.72 44.57 67.4%
2009-03-13 Dipole 156.77 83.64 46.6%
2008-10-14 Dipole 42.40 36.32 14.4%

5.1.1.2 Localizing Multiple Targets

To further demonstrate the filter, multiple WiFi emitters were localized simultaneously. Figure 5.3(a)

and Figure 5.3(b) show two separate flight tests localizing two emitters. Two separate unscented Kalman

filters are run for each flight, generating separate estimates of the target position, transmission power κ,

and path loss exponent α. Though α describes the RF environment, the propagation paths from the two

emitters are different and could lead to slightly different values for α. Identification is performed from each

node’s unique MAC address that is contained in the packet along with the RSSI measurement. These two

plots show that the trajectory of the aircraft and the estimates throughout the flight for both emitters.

It should also be noted that the hardware setup between these two flight days differs. The flight on

2009-03-13 (Figure 5.3(a)) had a regular dipole antenna attached to the 802.11 radio on the aircraft whereas
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Figure 5.3: Overview of the estimation of two nodes with a (a) dipole antenna and (b) true spherical antenna
in the UA. The circles are Node 1 and the squares are Node 2.
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Figure 5.4: Comparison of the true errors from both flights.

the flight on 2009-05-12 (Figure 5.3(b)) had a true omni antenna attached to it with a spherical antenna

pattern. The differences in performance of these two antennas is examined next.

5.1.1.3 Dipole Antenna vs. True Omni

One of the issues with utilizing UAS for this type of localization is that the antenna orientation of

the sensing radio will change with the orientation of the aircraft. Since a regular dipole antenna has a
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doughnut shaped antenna pattern [31], banking the aircraft towards or away from the node being localized

will cause a change in RSSI that is not accounted for in the measurement model of the UKF. Experiments

were conducted with both a dipole antenna and a true omni antenna that has a spherical antenna pattern

in three dimensions, meaning that the orientation of the aircraft will not affect the RSSI measurement.

Two different flight tests were conducted using these two different antennas. The nodes being sensed

were placed in similar positions for these flights and similar trajectories were flown. Since the UKF randomly

chooses the initial conditions, it was run offline 500 times for each set of flight data to compare the differences

in the UKF when applied to data collected by the two antennas. Using the spherical omni antenna showed a

significant improvement in the estimate. Figure 5.5 shows a histogram comparison of the 500 runs for each

flight. It was found that 91.7% of the time the spherical omni had less than 50m error, while the dipole

only accomplished this 9.2% of the time. The dipole antenna had an average final error of 199.9m, while

the spherical did much better at 30.5m. This result is expected since the measurement function essentially

assumed a spherical antenna pattern and hence was a better representation of the data collected with the

true omni antenna. The implication of these results are that the antenna patterns of both the transmitting

and receiving (UAS) radios needs to be known or estimated for good tracking performance.
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Figure 5.5: Histograms comparing the estimation errors for (a) a regular dipole antenna and (b) a spherical
pattern antenna over 500 runs. For clarity the errors greater than 300m were binned to 300m on the
histogram.
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5.2 Radio Frequency Localization of 433MHz Emitters

This section describes experiments performed to compare different estimators in localizing 433MHz

RF emitters. 15 flight experiments were flown to compare the EKF, UKF, and Particle Filter. See Appendix

A.2 for details on the three estimation algorithms. Comparisons were done and it was shown that the UKF

and PF both have similar performance but the UKF is computationally more efficient. For this work a total

of 15 flight experiments were conducted under FAA COA’s. All flight experiments were conducted at an

altitude of approximately 100m above ground level using either the Tempest or Skywalker X8 airframe with

the SwiftPilot RF sensing system.

Figure 5.6 contains the results of a specific flight test for the UKF and shows the aircraft trajectory

with overlayed position estimates over the course of the flight. Figure 5.7 is the error with 2σ covariance

bounds of the state variables [x, y]. The true values of x and y are based on the measured GPS position of

the MNR.
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Figure 5.6: UKF trajectory with filter estimates.
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Figure 5.7: UKF x and y state errors with covariance bound.

5.2.1 Comparisons of Error

The performance of the filters are compared over all 15 of the flight experiments. Figure 5.8 contains

the final position estimate of all 15 runs for the UKF, EKF, PF along with a batch estimator that processes

all of the measurements simultaneously. Note that the local coordinate system for all flight experiments has

an origin at the true MNR position, so in Figure 5.8 the true position is always the origin.

Now, lets examine the RMS error to compare the filters. Table 5.2 summarizes the RMS error over

the duration of each experiment for the three filters considered. This table shows that the RMS error average

over all 15 runs is very similar for the UKF and PF with the UKF doing slightly better. The EKF runs

result in an RMS error that is around double the other two filters.

5.2.2 Varying Initial Conditions

Next lets investigate the sensitivity of the estimators to the initial XY position estimate for the target.

In this subsection we compare the UKF, EKF and PF by averaging over the RMS and final errors over 10
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Figure 5.8: Comparison of final error for the 15 flight experiments.

Table 5.2: Comparison of the RMS error of the UKF, EKF, and PF

Run UKF EKF PF
1 54.475619 100.472648 72.426069
2 66.320865 129.550860 73.753278
3 93.523608 118.530551 106.523886
4 113.625201 207.602142 109.708648
5 109.927401 167.766781 102.052957
6 129.705132 161.490911 135.404864
7 46.610845 155.874704 63.989727
8 60.105433 187.975298 74.001782
9 40.307259 204.478662 73.760890
10 71.159307 98.495014 65.765419
11 66.114343 146.899503 69.026192
12 48.509772 123.688565 42.484053
13 61.690903 114.563181 41.883992
14 58.452549 123.593202 39.416316
15 62.914190 123.187899 77.284578

Average 72.229495 144.277995 76.498843

runs with varied initial conditions. The plot below shows the averaged final errors graphically for all 15 runs:

Now, lets examine the RMS error to compare the filters. Once again, note that the errors are averaged

across the 10 different runs with different initial estimates of the 2D position. Table 5.3 illustrates that the

performance of the filter is not very sensitive to the initial guess of the emitter location and the performance
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Figure 5.9: Comparison of final error for the 15 flight experiments for varied initial conditions

of the three filters is consistent with the previous sub-section.

5.2.3 Examining The Consistency Of The Different Filters

The experiment from Section 5.2.2 can also be used to measure the consistency of the filters. NEES

(normalized estimation error squared) or Squared Mahalanobis distance is a metric of estimator consistency.

It is defined as

NEES = x̃P−1x̃ (5.4)

where x̃ = x− x̂ (5.5)

and P is the estimate’s covariance matrix. We average the consistency i.e. NEES over the 10 runs from

Subsection 5.2.2 to calculate ANEES (Average NEES).

We illustrate the comparison of the filter consistencies and ANEES using one of the experiments.

The NEES provides a single metric to combine the estimator accuracy with its confidence. Table 5.4

shows the average ANEES for each of the estimators over the different datasets. Again, we once again have

similar performance for both the UKF and PF, with the EKF lagging behind in performance.
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Table 5.3: Average RMS Error over varied initial conditions.

Run UKF EKF PF
1 102.976141 98.932342 60.046421
2 72.585995 130.128328 75.467982
3 102.707571 119.538989 99.549227
4 115.894557 203.435750 113.060715
5 95.447963 167.545306 89.053345
6 128.504206 165.436358 121.192959
7 59.611726 152.433004 80.132752
8 67.848509 189.317968 77.965726
9 89.962875 206.842281 107.698603
10 92.054134 96.162405 100.323110
11 61.077884 149.084937 61.015343
12 48.073523 125.635491 43.114891
13 71.607337 113.867953 69.238168
14 66.114158 126.802949 62.623611
15 83.893632 119.475495 85.003760

Average 83.890681 144.309304 83.032441

Table 5.4: Average ANEES over the 15 flights.

Run UKF EKF PF
1 10.148842 20.461809 3.801378
2 6.788238 37.809648 7.607790
3 4.985616 22.957916 9.992477
4 7.895886 23.272946 11.377674
5 2.208845 9.315427 1.869855
6 4.704092 10.958020 5.665178
7 1.081404 7.893515 2.953320
8 0.971426 12.864685 1.262961
9 2.169709 29.251126 2.065835
10 1.231119 2.102476 1.699970
11 0.820897 7.791210 0.802100
12 1.376205 5.839091 0.976613
13 0.874574 3.129895 0.959887
14 0.755482 4.279931 0.692040
15 1.283364 2.805053 1.219086

Average 3.153047 13.382183 3.529744
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Figure 5.10: Comparison of filter consistency

5.3 Summary

These 433MHz localization experiments were used to compare the UKF, EKF, and PF. These experi-

ments show the EKF has the worst performance of these three filters as expected due to the non-linearity of

the measurement equation. The UKF and PF were close in performance with the UKF being computation-

ally much cheaper. These experiments verified the choice to utilize the UKF in the planning experiments

for both single and multi aircraft flight experiments.
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Chapter 6

Flight Experiments of the Planning Algorithm

This chapter presents the results of experiments assessing the planning algorithm presented in Chapter

3. Experiments were run using a combination of the Tempest and Skywalker UAS described in Chapter 4.

All flights were conducted at approximately 100m AGL. For all of the planning based flight experiments

presented in this chapter the sensing objective was to localize stationary 433MHz emitters broadcasting 5

times per second. Four key sets of experiments were conducted:

(1) Localization of stationary RF radio beacons. This was done for both 2.4GHz and 433MHz beacons

utilizing different UAS platforms. This work was described in Chapter 5 and will not be discussed

further here.

(2) The development of an empirical packet erasure channel communication model. This is based on

both air-to-ground and air-to-air flight experiments utilizing two way radio communication over a

WiFi routing protocol.

(3) The demonstration and assessment of the planning algorithm for the specific case of a single aircraft.

The experiments were first configured with the emitter and fusion center close together resulting in

near perfect communiation throughout the flights. This was done to assess the performance of the

planning algorithm focused mainly on sensing. Another single-aircraft experiment was run with the

emitter far from the fusion center to assess the shortcomings of the system due to communication

limitations.

(4) The demonstration and assessment of the planning algorithms for two aircraft. These experiments
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successfully demonstrated the algorithms on a real system performing the RF localization task. The

experiments were also used to showcase the improvement multi-hop communication can have on a

multi-UAS system.

The work presented in this chapter will provide the flight results and assessment for Item 3 and Item

4 in the above list.

6.1 Single UA Flight Experiments

Single-aircraft experiments were flown to assess the improvement in sensing when the planning al-

gorithm is utilized versus flying patterns without planning. These experiments involved the Tempest or

Skywalker UAS localizing a stationary 433MHz source. A total of 16 flight experiments were flown. These

experiments had three primary functions: (1) demonstrate the planning algorithm running in real-time on-

board a small UAS, (2) assess the performance of the planning algorithm in localizing these RF sources

compared with no planning, and (3) assess the limitations of a single-aircaft system due to limited commu-

nication range helping motivate the multiple UA experiments.

6.1.1 Mutual Information Path planning

For the single-aircaft planning the UA solves Problem 3, maximizing the modified local mutual infor-

mation utility, which is equivalent to solving Problem 2 in the case of a single UA.

u1∗
1:10 = arg maxJ1

3 (u1
1:10) = arg max I(X10, ỹ

1
1:10(S1

10(u1
1:10))

subject to u1
t ∈ [−ωmax, ωmax] , ∀t ∈ [1, · · · , 10]

s1t+1 = f1s
(
s1t ,u

1
t

) (6.1)

where fs is defined in Equation 2.27 for a non-holonomic vehicle and ωmax is the maximum turn-rate of the

vehicle, computed from the maximum bank angle. For these experiments the maximum bank angle was set

to 30o, which resulted in an ωmax = 18.0deg/s for the Tempest and ωmax = 23.2deg/s for the Skywalker. The

on-board computer plans over a 10 second horizon with a 1 second time step. The control is run in a receding

horizon manner where the control horizon is half the planning horizon (5 seconds) followed by replanning

for a further 10 seconds. The optimization is done on-board utilizing a standard genetic algorithm (GA)
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[55]. At each planning step the GA initializes with the remainder of the previous optimal solution padded

with 5s of flying straight along with three cases of (1) fly straight for 10s, (2) max right turn for 10s, and (3)

max left turn for 10s. The initial population is also seeded with 6 uniform random sets of turn rates. Each

new generation of trajectories is generated by selecting the trajectories with the best utility and performing

mutation and cross-over. Utilizing the on-board processor running for a fixed time of two seconds allowed

for approximately 100 generations of the fixed population size of 10 resulting in the evaluation of a total of

1000 possible trajectories.

There were a total of 16 experiments flown to evaluate single-aircaft planning. 15 of these experiments

the RF target source was placed near the sensor fusion base station so that communication between the two

was nearly perfect. This was done to evaluate the planning algorithm to improve the sensing. Figures 6.1

and 6.2 show examples of the trajectories for a flight with no planning and a flight with planning respectively.

Appendix A.3 contains the trajectories for all other experiments. The 9 experiments with no planning
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Figure 6.1: The trajectory for a flight with no planning.

involved having the aircraft fly different waypoint patterns near the emitting node. During these experiments
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Figure 6.2: The trajectory for a flight with planning.

the waypoint plan was moved irregularly to give good coverage around the emitting node. The 6 experiments

that ran the planning algorithm were sent to an orbit point prior to turning on the planning and estimation

algorithms simultaneously. The trajectories flown, shown in Figure 6.2 and Appendix A.3, fly paths that

attempt to get as close to the emitter as possible, limited by the altitude of the aircraft. It has been shown

that for a range estimate the maximum information gain from measurements occurs as the distance between

the UA and the emitter decreases [11] to a minimum, which is constrained by the altitude of the UA. The

information contribution of each measurement can be calculated from the Jacobian of the measurement

function. Since this will result in a matrix, we compute a scalar quantity based on A-optimal design [8],

which is a simplification that utilizes the trace of the measurement contribution, tr
(
HTR−1H

)
to compute

informative paths [26]. For the RF localization problem, the function is shown in Equation 6.2. In this

equation the only term that can be controlled is the range r, and minimizing the r value will maximize this

equation.

tr
(
HTR−1H

)
=

100

σ2
RSSI

[
α2

(ln(10))2

(
α2

r2
+

1

κ2

)
+ log10

(
1

r

)]
(6.2)
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Examining the performance of the localization for the planning vs. no planning case, Figure 6.3 is a

plot comparing the distributions of the final position error for all 15 experiments. The plot shows that the

final position error of the flights that included planning resulted in better performance with respect to the

error versus the non-planing flights. Note that the initial error for all experiments was set to 100m in both

the x and y axis relative to the true position for all experiments. Several experiments were conducted at

different locations, though the global coordinate systems were converted to a local x-y frame centered at the

true position of the RF emitter. The RMS error was averaged across the no-planning and the planning
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Figure 6.3: Overview of the final position error of the estimate comparing the planning vs. no planning
experiments.

experiments. Because experiments were run for different durations, the RMS error for the first three minutes

of each experiment was computed. The average RMS across the no-planning experiments was 108.6m with

an average final error of 90.2m. For the planning experiments the average RMS was 67.0m with an average

final error of 29.9m. This is a reduction in RMS error of 62%. Figure 6.4 shows the mutual information

gained for all 15 flight experiments, comparing the flights with planning to those with none.
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Figure 6.4: Comparison of mutual information gained for planning and no planning.

6.1.2 Communication Limitations

An additional experiment was run using the planning algorithm, with the base station and the RF

source placed approximately 1km apart. The purpose of this experiment was to assess performance when

communication is stressed. The algorithm works well in that it allows a single aircraft to achieve results that

would not happen if communication was ignored. The planer does well in that it plans a trajectory that gets

some information to the fusion center. The path planning algorithm pushed the aircraft to the point where

44.1% of packets were lost. A path planner based only on sensing would have flown close to the emitter

putting it outside of communication range to where none of those measurements would have been received

by the fusion center.

The measurements at this range resulted in poor performance by the UKF and a final RMS error of

121.6m and a final position error of 145.7m. This experiment was run to motivate the need for multiple

aircraft to improve the range of the sensor network. Figure 6.5 is a plot of the flight trajectory and estimated

position. Note that the estimate drifts to the North-East away from the true position over the course of the

experiment.
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Figure 6.5: Trajectory overview of the communication limited single-aircaft experiment.

6.2 Multi UA Flight Experiments

The two-aircraft experiments involved the Tempest and Skywalker UAS performing cooperative local-

ization with a ground based fusion center. The system utilized the B.A.T.M.A.N. Advanced mesh network.

Figure 6.6 has a high level overview of this system. The fusion center was a MacBook Pro running Gentoo

Linux. Collision avoidance was maintained by altitude separation, so one aircraft flew at approximately

100m AGL and the other at 120m AGL. The Tempest was flown at a commanded speed of 18m/s and the

Skywalker at 14m/s. The two-aircraft experiments were flown on 2013-07-02, 2013-07-08, and 2013-07-11

at the Table Mountain site. A total of four experiments were flown. Due to FAA restrictions and RECUV

practice, each experiment required six people to perform, limiting the number of experiments that could be

performed.

As in the single-aircraft experiments each aircraft planned a 10s trajectory and then flew 5s before

replanning. For these experiments the Skywalker was labeled vehicle #1 and the Tempest vehicle #2. Using

the hierarchical planning scheme in Problem 3, the Skywalker planned first to optimize its own modified
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Figure 6.6: Overview of the two-aircraft testbed.

mutual information utility i.e.

u1,h
1:10 = arg maxJ1

3 (u1
1:10) = arg max I(X10, ỹ

1
1:10(S1

10(u1
1:10))

subject to u1
t ∈ [−ωmax, ωmax] , ∀t ∈ [1, · · · , 10]

s1t+1 = f1s
(
s1t ,u

1
t

) (6.3)

For these experiments the maximum bank angle was set to 30o for both aircraft, which resulted in an

ωmax = 18.0deg/s for the Tempest and ωmax = 23.2deg/s for the Skywalker. The Skywalker’s plan is then

passed to the Tempest which computes it’s plan.

u2,h
1:10 = arg maxJ2

3 (u2
1:10) = arg max I(X10, ỹ

2
1:10(S2

10(u2
1:10))|ỹ1,h1:10)

subject to u2
t ∈ [−ωmax, ωmax] , ∀t ∈ [1, · · · , 10]

s2t+1 = f2s
(
s2t ,u

2
t

) (6.4)

Each aircraft attempted to transmit any new measurements to the fusion center. The UKF at the fusion

center performed an update whenever new data was received and sent out the updated state and covariance

to each aircraft to use for the initial conditions in the planner. Since the first vehicle in the hierarchy only

plans for itself it utilizes the single link model in Equation 2.13 while the second aircraft has to evaluate the

two possible choices by solving:
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β2
t (st) = max

[
β2,b
t , β2,1

t × β
1,b
t

]
(6.5)

Three types of experiments were flown to compare different scenarios and evaluate the performance

of the planning algorithm. The first involved having the fusion center close to the target. This effectively

allowed the aircraft to plan in a perfect communication environment, resulting in both aircraft flying close

to the target. The second multi-aircraft experiment involved an emitter much further from the fusion center

with only direct communication. This was to assess the performance of the algorithm with an emitter

at a range from the fusion center beyond the communication capabilities of the network. The third set of

experiments involved the same configuration as the second with the change of using multi-hop communication

to extend the range of the sensor network.

6.2.1 Good Communication Case

This experiment was used as a baseline for the best that two aircraft could do to localize a target

without range limitations. The separation between the fusion center and the emitter was only 17m. The

resulting trajectory from this flight experiment is shown in Figure 6.7. For the RF localization formulation,

the most information is gained the closer the aircraft are to the emitter as shown in Equation 6.2. The

trajectories overfly the estimated emitter position, where they achieve the minimum distance possible to the

target based on their altitude.

6.2.2 Limited Direct Communication Case

The second experiment was done to assess the performance of the planning algorithm with direct

communication using two aircraft when communication is stressed similar to the single-aircraft experiment

in Section 6.1.2. The emitter was placed much further from the base station, precisely 1250m away. The

resulting trajectories from this experiment are shown in Figure 6.8. The trajectories of both aircraft stayed

close enough to the fusion center to allow communication similar to the single-aircraft experiment involv-

ing a similar scenario. These trajectories allowed the two aircraft to get some measurements back to the

fusion center. Though this scenario is still submodular, the resulting trajectories motivate using multi-hop



www.manaraa.com

65

−600 −400 −200 0 200
−800

−700

−600

−500

−400

−300

−200

−100

0

2UA Flight 1 with duration 3.7 min

[m]

[m
]

 

 

UA0
UA1
Estimate
True Position
Final Estimate
Base

Figure 6.7: Flight trajectory of 2 UA localizing a close in target

capabilities to extend the range of the network to get one of the sensing aircraft closer to the emitter.
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Figure 6.8: Flight trajectory of 2 UA localizing a far away target with only direct communication

6.2.3 Multi-hop Communication Case

The final set of experiments involved a similar scenario to the second experiment, but now the air-

craft can perform multi-hop communication which the planning algorithm now incorporates. The resulting

trajectories (Figures 6.9 and 6.10) have one of the aircraft position itself between the leading aircraft and

the emitter, effectively acting as a relay. This shows one of the key features of this planning algorithm where
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there is no explicit assignment of an aircraft to be a sensor or a relay but this behavior emerges for this

scenario. This relay-like behavior is a direct result of the prioritization of the aircraft. Aircraft #1, which

has the relay like behavior, optimizes only its own trajectory without factoring in the other aircraft. This

constrains it to not exceed a certain range from the fusion center as was shown in the single-aircraft exper-

iment with a far away emitter in Figure 6.5. Aircraft #2, which plans second in the priority and considers

the first aircrafts trajectory, takes advantage of the location of aircraft #1 and flies closer to the emitter

using #1 as a relay. These trajectories result in much better localization performance despite losing the

submodularity property present in the trajectories in Figure 6.8.
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Figure 6.9: Flight trajectory of 2 UA localizing a far away target with multi-hop communication

6.2.4 Performance Comparison

The performance of these respective experiments is compared for a set time of 3 minutes from the

start of the experiment. As expected, the close in case with two aircraft had the best performance, with an

RMS error on the location estimate of 34.2m and a final error of 26.6m. This is also an improvement over the

single-aircraft planning experiments that were flown close to the target with an average RMS error of 67.0m.

The case with direct only communication for two aircraft did fairly poorly, having an RMS error of 140.4m

and a final error of 139.7m. This performance was expected and is similar to the single-aircraft experiment

with an emitter placed a distance from the fusion center with both showing very little improvement in
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Figure 6.10: Flight trajectory of 2 UA localizing a far away target with multi-hop communication

sensing. Taking the measurements that far away from the target produced very little improvement in the

localization of the target.

The multi-hop case produced an average RMS of 82.5m and a final position error averaging 55.9m,

illustrating the utility of planning with multi-hop for this particular scenario. Figure 6.11 below shows a

comparison of the final error for the 4 experiments; (1) the close in case, (2) the direct communication

case, and (3) and (4) the multi-hop case. Figure 6.11 also contains the associated covariances to show the

consistency of the estimator. The error ellipses plotted here are 2σ and for the plots the estimates are well

within these bounds showing efficient estimation. Computing the mutual information gained for each of

these 4 flights results in values of 9.0 for the ”perfect” communication case, 3.0 for the direct communication

case with the emitter far away, and 6.6 for both of the multi-hop experiments with the target far away.

The setup for the experiments with the target far away was at the edge of the ability of the aircraft

to form a chain and get one aircraft close to the target, resulting in the primary sensing UA not being able

to fully cover the area around the target, as seen in Figure 6.10. A slightly closer target probably would

have reduced the multi-hop RMS to something closer to the single-aircraft cases discussed in the previous

section and allowed the error in the two-aircraft experiment to likely come close to the case of one aircraft

flying close to the RF emitter.

The two experiments involving multi-hop communication also pushed the limits of the network. They
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Figure 6.11: Comparison of the performance for different communication cases

resulted in 41.1% and 30.2% packet loss for the two flights for the aircraft more distant from the fusion

center. This large number of dropped packets only had a small affect on the performance of the respective

estimators. Figure 6.12 shows estimator performance at the base (with dropped packets) against the same

estimator run offline using all of the measurements that were stored on-board each aircraft. The key part of

these plots is the dashed lines, which represent the covariance bound of each estimator, which is a measure of

how much information was gathered in the packet loss vs. the perfect communication case. Computing the

mutual information, the estimator at the base achieved 93.0% and 96.8% of the mutual information using

all of the measurements. This small difference indicates that the planner did a good job of balancing packet

loss and sensing. In the first experiment, the estimator with dropped packets actually did better in terms

of the final error in position with less packets but the uncertainty is less (i.e. there is more information) for

the case with no dropped packets as expected. It should be noted that this discrepancy in final error is due

to the stochastic nature of the estimator and examining the covariance based error is more useful.

Figure 6.13 shows a comparison of the mutual information gained for the four experiments. The

performance of improving mutual information with each flight matches the error performance. The flight with

the emitter close to the fusion center reached the highest mutual information in the shortest amount of time.

The experiment with the emitter far from the fusion center that only planned with direct communication

had the lowest mutual information. The two experiments with the emitter far away in which the planner
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Figure 6.12: Plots analyzing the performance of the estimator in the face of packet loss

utilized multi-hop communication had mutual information values in between the other two cases.
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Figure 6.13: Comparison of mutual information gained for the two-aircraft experiments.

6.3 Multiple UA Simulations

Further simulations were run to analyze the performance of the algorithms for multiple UA. All of

these examples are based on localization of stationary RF emitters with the sensing properties based on the

2.4GHz WiFi sources. In all cases the aircraft were tasked with getting the measurements back to a fixed
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base station which is responsible for the sensor fusion. The communication is based on the multi-hop network

with each individual link modelled with the packet erasure channel model. When packets are dropped, the

measurements contained in them will not be incorporated into the target estimates. The objective of these

example cases is to assess the performance of the planning algorithm along with running more complex

scenarios than were possible for the flight experiments.

Two scenarios were established involving 2 aircraft localizing one RF node. Two separate trajectory

planners were run, the first maximizing only the sensing gain by setting βi,jt = 1 for all links, i.e. ignoring the

communication limitations of the aircraft. The second trajectory planner is utilized the empirical link model

in Figure 2.5. Figure 6.14 shows the trajectories flown using the two approaches. The algorithm maximizing

sensing only sends both aircraft towards the target, as seen in Figure 6.14(a). However, this is at the edge

of their communication range resulting in a significant amount of dropped packets. The planning algorithm

that incorporates the link model results in the trajectory seen in Figure 6.14(b). The algorithm maximized

the flow of information to the base station, which resulted in one of the aircraft being positioned as a relay

and the other flying close to the emitter.
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Figure 6.14: Comparison of trajectories when (a) communication is not added to the planning and (b) when
it is (right)

Figure 6.15 shows the error comparison between the two cases. The algorithm with communication
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implicitly in the planning was able to converge to a good position solution. The long periods of time with no

change in error for the sensing only planner occur because measurement packets cannot reach the base station.

Figure 6.16 shows a comparison of the communication performance. The plot itself shows the probability

of successful transmission for each aircraft back to the base station. The plot does not show which route

is chosen, just the probability of the best available route. A solid point indicates a successful transmission

and an open one indicates a dropped packet. As expected, the algorithm that factors in communication

performs better in terms of communication for this specific scenario. It can be seen that the periods of flat

error growth in Figure 6.15 correspond to the periods of low probability and no packet delivery in Figure

6.16.
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Figure 6.15: Comparison of the position errors when the trajectory planner does not factor in the commu-
nication and when it does so.

The next simulation includes two aircraft localizing three WiFi nodes. Figure 6.17 shows the trajec-

tories and node position estimates along with the estimation error as a function of time. This case highlights

trajectories where the aircraft switch between primarily sensing or communication roles but with no explicit

task allocation. In particular, over the course of the simulation Aircraft 1 transitions from contributing to

the information mainly from the content of sensed measurements to contributing as a communication relay.

Initially, Aircraft 1 first spends just over a minute orbiting near Target 3, which is close enough to the base

station where most of the measurement packets get through (Figure 6.18) causing the estimation error for

Target 3 to drop quickly (Figure 6.17). Once there is little information to be gained by continuing to orbit
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Figure 6.16: Comparison of the communication performance for (a) no communication in the trajectory
planning and (b) adding communication to the planning.

Target 3, Aircraft 1 moves up to act as a relay for the measurements being made by Aircraft 2. Up to this

point Aircraft 2 is too far from the base station and few of its measurements get through (Figure 6.18).

The communication for Aircraft 2 improves once Aircraft 1 starts relaying the measurement packets back

to the base station around the 1 minute mark. From that time until just after the 2 minute mark Aircraft

2 is orbiting Target 1, and Figure 6.17 shows that shortly after these packets start to get through the error

in Targets 1 position drops significantly. The error does climb again after 1.5 minutes, however, this is the

actual error, while the planner is working off the predicted information gain in the estimated covariance

which continues to drop. Just after the 2 minute mark, Aircraft 2 moves to orbit Target 2 and the error in

that estimate drops accordingly.

The next scenario includes 3 aircraft and 2 WiFi targets. Figure 6.19 shows the trajectory and

estimated position error. The two targets were deliberately placed far enough away from the base station

so that direct communication would not be possible for an aircraft that is taking measurements close to the

target. Aircraft 1 automatically sets itself up as a relay, while Aircraft 2 and 3 take advantage of Aircraft 1’s

position to fly closer to the targets and get better measurements back to the base station. The priority for

the sequential planning algorithm goes Aircraft 1→ Aircraft 2→ Aircraft 3, meaning that Aircraft 1 plans
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Figure 6.17: Trajectories and estimator errors for the case of two aircraft localizing three WiFi nodes.
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Figure 6.18: The packet error rate probability and dropped packets for the case of two aircraft localizing
three WiFi nodes.

only for itself, while Aircraft 2 plans given Aircraft 1’s chosen trajectory, etc. This implies that Aircraft 1

will always keep itself closer to the base station since the planner on this aircraft will not take advantage of

the other aircraft to act as relays, even if it initially started closest to one of the targets.

Figure 6.20 shows the communication performance for this case. The packet error rate for Aircraft 2

and 3 is hovering around 50% or worse for most of this scenario. This illustrates how the algorithm trades

between communication performance and sensing utility to improve overall information content delivered to

the base. Even though only half the measurements get through, they are highly valued since the aircraft are

close to the targets and total information gain is optimized.
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Figure 6.19: Trajectories and estimator errors for the case of three aircraft localizing two WiFi nodes.
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Figure 6.20: The packet error rate probability and dropped packets for the case of three aircraft localizing
two WiFi nodes.

The last scenario shown in Figure 6.21 is similar to the 2 aircraft case in Figure 6.14 except now

the WiFi node is further away and four aircraft are used. The team of aircraft automatically establish a

multi-hop chain to get the very informative measurements from Aircraft 4 back to the base station. Though

not obvious from the plot, Aircraft 4 takes approximately 1 minute to get close to the target from its starting

point. The error plot in Figure 6.21 shows that the estimation error drops significantly just after the 1.25

minute mark. Looking at the packet probability of Aircraft 4 in Figure 6.22 from the 1 minute mark on,

it takes about 6 measurements getting through from this time to see the drop in estimation error. This

showcases the utility of measurements that are taken close to the target. The measurement packets from



www.manaraa.com

75

Aircraft 4 are so informative that the algorithm converged to a configuration where these measurements are

only getting through approximately 20% of the time (Figure 6.22). As in the previous examples, the order of

the optimization goes from Aircraft 1 through Aircraft 4. This causes the multi-hop chain to always appear

in this order despite the starting positions of the aircraft.
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Figure 6.21: Trajectories and estimator errors for the case of four aircraft localizing one WiFi node.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5
1

UA 1

P
E

R

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5
1

UA 2

P
E

R

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5
1

UA 3

P
E

R

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5
1

UA 4

Time (min)

P
E

R

Figure 6.22: The packet error rate probability and dropped packets for the case of four aircraft localizing
one WiFi node.
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6.4 Summary

In this chapter experiments were presented to validate and demonstrate the algorithms and assess their

performance. Using single-aircraft flight experiments a significant improvement was shown in the estimation

performance for the 433MHz emitter localization problem over the flights that employed planning versus

ones that did not. A similar experiment was run using two aircraft that showed further improvement in

localization. The communication limitations were examined using the single-aircraft case with a target far

from the base station. It was demonstrated that even using two aircraft with only the direct communication

scheme had similarly poor performance because of the range to the target. It was demonstrated that using

multi-hop communication to extend the range of the sensor network greatly improved performance for this

scenario. Simulated experiments were also used to demonstrate the need for modelling communication in

the planning along with demonstrating the distributed planning for more complex scenarios.
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Conclusion

This dissertation presented an algorithm for the control of a team of networked unmanned aircraft

that utilized mutual information to incorporate both sensing and communication. Specifically the problem

of distributed path planning for sensor networks composed of vehicles using packet erasure channels for

communication was examined. The algorithm maximized the mutual information in a distributed manner

for both the direct communication model and for systems employing multi-hop communication schemes.

7.1 Distributed Information Gathering Optimization Algorithm

A distributed path planning algorithm was presented and assessed. A local utility function used by

each vehicle was derived as the local contribution to the mutual information of the entire team. The algorithm

was assessed for both direct communication model and for systems employing multi-hop communication

schemes. The planning was shown to be submodular for the direct communication scheme and could thus

be bounded to within half of the global optimal. It was shown that submodularity breaks down for the

multi-hop communication scheme. Over a large batch of runs it was shown that the hierarchical algorithm

still has decent performance. Monte Carlo simulations were also employed to examine the sub-optimality of

assumptions to make the problem tractable and these simulations showed that the performance was close to

the full calculation of mutual information.
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7.2 UAS Description

A key contribution of this work was the development and testing of several unmanned aircraft systems

to gather communication data, demonstrate and assess the RF localization algorithms, and perform single

and multi aircraft flight experiments of the planning algorithms. The NexSTAR WiFi Sensing UAS was

used to develop and test the RF localization algorithm for 2.4GHz WiFi emitters. For the single and

multi-vehicle path planning the Multi-aircraft RF sensing UAS was developed using both the Tempest and

Skywalker airframes. All three aircraft types performed very well over a 5 year period. A total of 230 flight

experiments were done in support of this work with only one aircraft lost over the entire period.

7.3 Radio Frequency Localization Experiments

RF localization experiments presented an unscented Kalman filter for WiFi emitters at 2.4GHz. Re-

sults were presented from different days of flight operations to show the performance of the algorithm for

localizing stationary ground nodes. It was demonstrated that incorporating the radio parameters into the

state estimate greatly improved the localization over just having the node position in the state. It was also

demonstrated that using a true omni antenna over a regular dipole on the UA also resulted in a better

estimate. The localization was done on ground nodes whose antennas were specifically designed to have

good properties for communicating with aircraft overhead.

RF localization experiments were also flown using 433MHz emitters. These experiments were used

to compare different estimation algorithms, including the EKF, UKF, and PF. 15 different experiments

were flown to assess these estimation algorithms using both the Tempest and Skywalker systems. These

experiments showed the EKF has the worst performance of these three setups as expected due to the non-

linearity of the measurement equation. The UKF and PF were close in performance with the UKF being

computationally much cheaper. These experiments verified the choice to utilize the UKF in the planning

experiments for both single and multi aircraft flight experiments.
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7.4 Flight Experiments of the Planning Algorithm

The planning experiments to demonstrate and assess the algorithms were presented in this dissertation.

The packet loss data required for empirical link model was collected over the course of 21 flights and the

link model derived. The planning algorithms were tested for the problem of localizing stationary 433MHz

RF beacons. Single aircraft experiments were flown to demonstrate the algorithms running in real-time and

measure the improvement in sensing from using the planning algorithm over unplanned trajectories. An

experiment was also run to show the poor performance of the localization when the RF beacon is effectively

outside of the communication range of the aircraft. This specific experiment was used to motivate the 2

aircraft experiments.

The multi-aircraft experiments were successfully used to demonstrated and evaluate the cooperative

planning. The first aspect was demonstrating the planning and messaging architecture to perform real-time

missions with the presented algorithms. Developing and fielding this system was a significant contribution

of this work. The utility of cooperative sensing was demonstrated using 2 aircraft for the close in ”perfect”

communication case which showed improvement in estimation over the single vehicle planning experiments.

The limitation of direct communication was shown for far away beacons in a third flight experiment with

similar poor performance to the similar single vehicle scenario. The two final experiments run demonstrate

the improvement for utilizing multi-hop communication can give in extending the range of the network. The

multi-hop algorithm was also assessed and compared to a ”best” case filter where all of the measurements

were used (no dropped packets) and it was shown that this had little effect on the estimation and the planning

algorithms found a good balance between sensing and comm.

7.5 Future Work

There are several improvements and follow-on studies that can be done to continue and improve

this work. The communication link model used in the formulation of the utility metric only requires the

computation of the probability of successful transmission. A natural extension of this work is to learn and

adapt this model online. It was shown [5] that the radio frequency environment at the 2.4GHz spectrum
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varies greatly. Learning this environment online [54] and feeding that into the link model will result in

a system that is much more robust in a real-world environment. This would also allow very interesting

scenarios such as dealing with active jamming sources [5] while robustly performing sensing missions.

Future work on the distributed path planning should involve new and improved schemes, specifically

for the multi-hop communication case. Allowing multi-hop communication greatly extends the range and

utility of UAS sensor networks and improving performance for these types of networks would improve this

utility. Ideas for new planning schemes include a best response planner where each vehicle plans given

assumptions of what the other team members will do.

Finally, from an experimental point of view, future work should include more testing under different

conditions. These new conditions should include flying experiments with more aircraft along with testing

for different configurations of RF emitters similar to the simulated experiments at the end of Chapter 6.

Going one step further would involve new sensing scenarios including (1) moving targets, (2) bearings-only

tracking of RF sources, and (3) entirely different sensing missions such as surface topography mapping. It

was found over the course of this work that going beyond simulations and flying experiments can produce

new and interesting insights into the area of path planning. Continuing this should be a big focus of future

work.
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Appendix

A.1 Optimal Bounds for Submodular Functions

First, it is necessary to show that the utility function is a submodular set function, which is essentially

a function with diminishing returns as more sensor trajectories are added. The definition comes from

looking at the incremental value of adding trajectory j to some set of trajectories A, defined as ρj(A) =

J (A ∪ {j})− J(A). This results in the formal definition of a submodular set function

ρj(S) ≥ ρj(T ), ∀ S ⊆ T ⊆ E and j ∈ E − T (A.1)

See [28] for more equivalent definitions. For the case of perfect communication, the utility function is

submodular per planning epoch. For each vehicle to compute its own trajectory at each planning epoch, we

establish a fixed planning hierarchy where each vehicle plans and then uploads it’s plan, along with those

higher in the order, to the next vehicle. Each vehicle plans its path by solving:

τhn = arg max
τn

J (τn|τ1:n−1) (A.2)

Note that the notation was relaxed, where {τ1, . . . , τn} = τ1:n. Vehicle n will now transmit a full trajectory

vector τ1:n to vehicle n+ 1. This will allow vehicle n+ 1 to plan with the same estimates as vehicle n.
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(A.3)

The first step is true do to cancelling terms over the sum. The second step utilizes submodularity, the

incremental gain will be more for a smaller set. The third step is due to τhk being better than τ∗k for the cost

given that τh1: k−1 were chosen for the first k − 1 terms by definition in the hierarchical planner. Using this

result and re-arranging results in:

1

2
J (τ∗) ≤ J

(
τh
)
≤ J (τ∗) (A.4)

which proves that the hierarchical approach will be at least as good as half the optimal solution for perfect

communication.

A.2 Estimation algorithms

Three estimation algorithms are compared for the RF localization problem. These are the Extended

Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and the Particle Filter (PF). This section

provides an overview of each of these three algorithms.

A.2.1 EKF Development

The EKF utilizes linearized equations of a non-linear system to estimate the first two moments, mean

and covariance, of the system [50]. The two main steps of the EKF are the time update and measurement

update.

The first step of the EKF is the time update. Starting with a previous position estimate x̂k and

covariance Pk and owing to the fact that the targets are stationary, the state and covariance are computed:

xk+1 = x̂k (A.5)
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P k+1 = Qk+1 + Pk (A.6)

where Qk = E[wkw
T
k ] is the process noise matrix.

The second step is the measurement update to process a new RSSI measurement, zk+1. First the

deviations of the measurement from the predicted RSSI based on the estimated state xk+1 and the aircraft

position uk+1 is computed.

yk+1 = zk+1 − h(xk+1,uk+1, 0) (A.7)

Next, the Kalman gain is computed:

K = P k+1H̃
T (H̃P k+1H̃

T +Rk+1) (A.8)

where the sensor noise covariance Rk = E[vkv
T
k ] is assumed constant in time and the H̃ matrix is found

using:

H̃ = ∇xh (xk+1, 0) (A.9)

which for this system is:

H̃ =

[
−10α(x− xs)
r2 log(10)

,
−10α(y − ys)
r2 log(10)

, 1,−10 log10 r

]
(A.10)

where r = ‖pr,k−ps,k‖ is the range from the aircraft to the emitter. The last step is to update the estimate

of the state and covariance.

x̂k+1 = xk+1 +K(yk+1 − H̃xk+1) (A.11)

Pk+1 = (I −KH̃)P k+1(I −KH̃)T +KRk+1K
T (A.12)

A.2.2 UKF Development

The UKF represents probability density functions as a select set of sample points that are propagated

through the state and measurement equations. The main steps of the UKF are presented here, see reference

[18] for more details.

The first step of the UKF is the time update. The time update equations for the RF localization

problem is the same as for the EKF described above. The second step is the measurement update. Using the
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result of the time update the 2n+ 1 σ points are first, where n is the dimension of the state vector resulting

in nine σ points using the matrix square root:

χk+1|k,0 = xk+1

χk+1|k,1:n = xk+1 + γ
√

Pk+1

χk+1|k,n+1:2n = xk+1 − γ
√

Pk+1

(A.13)

where for this work γ =
√

3. Next, the measurement sigma points are computed by taking these sigma

points and putting them through the observation equation.

Zk+1|k,i = h(χk+1|k,i,ps,k+10)) (A.14)

zk+1 =

2n∑
i=0

Wm,iZk+1|k,i (A.15)

where Wm,i are the measurement weights with Wm,0 = − 1
3 and Wm,i = 1

6 for i = 1 . . . 8. The measurement

innovation and cross-correlation covariances are computed next,

Pzz = Rk+1 +

2n∑
i=0

Wc,i(Zk+1|k,i − zk+1)(Zk+1,i − zk+1|k)T (A.16)

Pxz =

2n∑
i=0

Wc,i(χk+1|k,i − xk+1)(Zk + 1, i− zk+1|k)T (A.17)

where Rk = E[vkv
T
k ] is the sensor noise covariance and Wc,i are the cross-correlation weights with values

Wc,0 = 5
3 and Wc,i = 1

6 for i = 1 . . . 8. Finally the estimate and covariance for time k + 1 are computed

using:

Pk+1|k+1 = P k+1 −KPzzKT (A.18)

where

K = PxzP
−1
zz (A.19)

Using the sensor measurement, zk+1 the new estimate and covariance are computed:

x̂k+1 = xk+1 +K(zk+1 − zk+1) (A.20)

Pk+1|k+1 = P k+1 − PxzP−1zz Pxz. (A.21)
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A.2.3 Particle Filter Development

The particle filter used in the localization comparison is developed next [53]. When localizing a point

(in two or three dimensions) in presence of uncertainty, filtering techniques like Extended Kalman filter and

Unscented Kalman filter have the advantage of providing a compact representation of the position estimate

and its uncertainty. However, they fail to represent non-Gaussian and multi modal distributions[52], which

can be easily handled by a particle filter.

The particle filter localizes each target using sampling importance re-sampling[52]. Each of the parti-

cles x
[i]
k (i = 1, . . . ,M) in this particle filter represent a hypothesis of the state for a single RF source. Thus

the state of the ith particle at time step k is given by

x
[i]
k = [x

[i]
k y

[i]
k κ

[i]
k α

[i]
k ]T

The particle filter is initialized at time step k = 0. During initialization, all its particles are uniformly

distributed in a circular region centered around pUA. The radius of this circular region is set equal to

the listening radius or maximum detection range. This fixed parameter initialization prevents the particle

filter from failing due to an extremely noisy first measurement. The pessimistic and signal independent

initialization of the particle filter increases the probability that the particle cloud covers the true location of

the target.

In the case of static targets, the particles’ states do not change. Hence the state time update is given

by,

x
[i]
k+1 = x

[i]
k + w

[i]
k ∀i (A.22)

where w
[i]
k ∼ N (0,Qk) is the process noise.

The measurement equation 2.23 is used to predict the observation at each of the particles x
[i]
k

ẑ
[i]
k+1 = h(x

[i]
k+1,uk+1, 0) (A.23)

Based on their predicted observations, the particles are weighted to determine the importance of their

hypotheses. These importance weights are given by

w
[i]
k+1 =

1√
2πRk

exp

[
−1

2
(ẑ

[i]
k+1 − zk+1)TR−1k (ẑ

[i]
k+1 − zk+1)

]
(A.24)
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The new state estimate of the target is given by

x̂k+1 =

∑M
i=1 w

[i]
k+1x

[i]
k+1∑M

i=1 w
[i]
k+1

(A.25)

In order for the particles to approximate the target distribution i.e. p(xk|z1, z2, . . . , zk), they have to

be re-sampled using importance weights. These re-sampled particles are propagated to the next time-step.

Particles with higher weights i.e. particles that represent higher probability hypotheses have a higher chance

of being re-sampled. Thus, re-sampling concentrates the particles in regions of higher probability.

This spread or distribution of the particles can be used to compute the estimated covariance matrix

Σk+1 =
M∑
i=1

w
[i]
k x̃Tk x̃k (A.26)

where x̃k+1 = x− x̂k+1 (A.27)

A.3 Single Vehicle Flight Trajectories

The following plots, Figures A.1 through A.8 contain trajectories for single vehicle flights conducted

for localizing 433MHz RF emitters.

Figures A.9 through 6.5 contain trajectories for single vehicle flights conducted for localizing 433MHz

RF emitters that utilize the planning algorithm.
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Figure A.1: The trajectory for a flight 2 with no planning

−300 −200 −100 0 100 200
−600

−500

−400

−300

−200

−100

0
Flight 3 with duration 18.0 min

[m]

[m
]

 

 

Trajectory
Estimate
True Position
Final Estimate
Base

Figure A.2: The trajectory for a flight 3 with no planning
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Figure A.3: The trajectory for a flight 4 with no planning
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Figure A.4: The trajectory for a flight 5 with no planning
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Figure A.5: The trajectory for a flight 6 with no planning
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Figure A.6: The trajectory for a flight 7 with no planning
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Figure A.7: The trajectory for a flight 8 with no planning
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Figure A.8: The trajectory for a flight 9 with no planning
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Figure A.9: The trajectory for a flight 10 with planning
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Figure A.10: The trajectory for a flight 11 with planning
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Figure A.11: The trajectory for a flight 13 with planning
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Figure A.12: The trajectory for a flight 14 with planning
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Figure A.13: The trajectory for a flight 15 with planning
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